76 research outputs found

    A fluorescent polarization-based assay for the identification of disruptors of the RCAN1/calcineurin A protein complex

    Get PDF
    5 pages, 4 figures, a table. 19891949 [PubMed]Calcineurin is a Ca(2+)/calmodulin-dependent serine/threonine protein phosphatase involved in many biological processes and developmental programs, including immune response. One of the most studied substrates of calcineurin is the transcription factor NFAT (nuclear factor of activated T cells) responsible for T-cell activation. Different anticalcineurin drugs, such as cyclosporine A and FK506, are the most commonly used immunosuppressants in transplantation therapies. Unfortunately, their mechanism of action, completely blocking the calcineurin phosphatase activity while also requiring continuous administration, bears severe side effects. During recent years, the family of regulators of calcineurin (RCAN) has been described and studied extensively as modulators of calcineurin signaling pathways. The RCAN1 region, spanning amino acids 198 to 218 and responsible for inhibiting the calcineurin-NFAT signaling pathway in vivo, has been identified. An RCAN1-derived peptide spanning this sequence interferes with the calcineurin-NFAT interaction without affecting the general calcineurin phosphatase activity. Here we report the development of an optimized in vitro high-throughput fluorescence polarization assay based on the disruption of the RCAN1(198-218)-CnA interaction for identifying molecules with immunosuppressant potential. This approach led us to identify dipyridamole as a disruptor of such interaction. Moreover, three small molecules with a potential immunosuppressive effect were also identifiedThis work was supported by grants from Fundació La Marató de TV3 (Ref. 030830), the Spanish Ministry of Education and Science (SAF2006-04815, BIO2004-00998, BIO2007-60066, CTQ2005-00995/BQU), the Fundación Mutua Madrileña 2007 and from the Generalitat de Catalunya (Ref. 2006 BE 00051)Peer reviewe

    Future air quality in Europe: a multi-model assessment of projected exposure to ozone

    Get PDF
    In order to explore future air quality in Europe at the 2030 horizon, two emission scenarios developed in the framework of the Global Energy Assessment including varying assumptions on climate and energy access policies are investigated with an ensemble of six regional and global atmospheric chemistry transport models. <br><br> A specific focus is given in the paper to the assessment of uncertainties and robustness of the projected changes in air quality. The present work relies on an ensemble of chemistry transport models giving insight into the model spread. Both regional and global scale models were involved, so that the ensemble benefits from medium-resolution approaches as well as global models that capture long-range transport. For each scenario a whole decade is modelled in order to gain statistical confidence in the results. A statistical downscaling approach is used to correct the distribution of the modelled projection. Last, the modelling experiment is related to a hind-cast study published earlier, where the performances of all participating models were extensively documented. <br><br> The analysis is presented in an exposure-based framework in order to discuss policy relevant changes. According to the emission projections, ozone precursors such as NO<sub>x</sub> will drop down to 30% to 50% of their current levels, depending on the scenario. As a result, annual mean O<sub>3</sub> will slightly increase in NO<sub>x</sub> saturated areas but the overall O<sub>3</sub> burden will decrease substantially. Exposure to detrimental O<sub>3</sub> levels for health (SOMO35) will be reduced down to 45% to 70% of their current levels. And the fraction of stations where present-day exceedences of daily maximum O<sub>3</sub> is higher than 120 μg m<sup>−3</sup> more than 25 days per year will drop from 43% down to 2 to 8%. <br><br> We conclude that air pollution mitigation measures (present in both scenarios) are the main factors leading to the improvement, but an additional cobenefit of at least 40% (depending on the indicator) is brought about by the climate policy

    The Development of Cephalic Armor in The Tokay Gecko (Squamata: Gekkonidae: \u3cem\u3eGekko gecko\u3c/em\u3e)

    Get PDF
    Armored skin resulting from the presence of bony dermal structures, osteoderms, is an exceptional phenotype in gekkotans (geckos and flap-footed lizards) only known to occur in three genera: Geckolepis, Gekko, and Tarentola. The Tokay gecko (Gekko gecko LINNAEUS 1758) is among the best-studied geckos due to its large size and wide range of occurrence, and although cranial dermal bone development has previously been investigated, details of osteoderm development along a size gradient remain less well-known. Likewise, a comparative survey of additional species within the broader Gekko clade to determine the uniqueness of this trait has not yet been completed. Here, we studied a large sample of gekkotans (38 spp.), including 18 specimens of G. gecko, using X-rays and high-resolution computed tomography for visualizing and quantifying the dermal armor in situ. Results from this survey confirm the presence of osteoderms in a second species within this genus, Gekko reevesii GRAY 1831, which exhibits discordance in timing and pattern of osteoderm development when compared with its sister taxon, G. gecko. We discuss the developmental sequence of osteoderms in these two species and explore in detail the formation and functionality of these enigmatic dermal ossifications. Finally, we conducted a comparative analysis of endolymphatic sacs in a wide array of gekkotans to explore previous ideas regarding the role of osteoderms as calcium reservoirs. We found that G. gecko and other gecko species with osteoderms have highly enlarged endolymphatic sacs relative to their body size, when compared to species without osteoderms, which implies that these membranous structures might fulfill a major role of calcium storage even in species with osteoderms

    Transplantation of Specific Human Astrocytes Promotes Functional Recovery after Spinal Cord Injury

    Get PDF
    Repairing trauma to the central nervous system by replacement of glial support cells is an increasingly attractive therapeutic strategy. We have focused on the less-studied replacement of astrocytes, the major support cell in the central nervous system, by generating astrocytes from embryonic human glial precursor cells using two different astrocyte differentiation inducing factors. The resulting astrocytes differed in expression of multiple proteins thought to either promote or inhibit central nervous system homeostasis and regeneration. When transplanted into acute transection injuries of the adult rat spinal cord, astrocytes generated by exposing human glial precursor cells to bone morphogenetic protein promoted significant recovery of volitional foot placement, axonal growth and notably robust increases in neuronal survival in multiple spinal cord laminae. In marked contrast, human glial precursor cells and astrocytes generated from these cells by exposure to ciliary neurotrophic factor both failed to promote significant behavioral recovery or similarly robust neuronal survival and support of axon growth at sites of injury. Our studies thus demonstrate functional differences between human astrocyte populations and suggest that pre-differentiation of precursor cells into a specific astrocyte subtype is required to optimize astrocyte replacement therapies. To our knowledge, this study is the first to show functional differences in ability to promote repair of the injured adult central nervous system between two distinct subtypes of human astrocytes derived from a common fetal glial precursor population. These findings are consistent with our previous studies of transplanting specific subtypes of rodent glial precursor derived astrocytes into sites of spinal cord injury, and indicate a remarkable conservation from rat to human of functional differences between astrocyte subtypes. In addition, our studies provide a specific population of human astrocytes that appears to be particularly suitable for further development towards clinical application in treating the traumatically injured or diseased human central nervous system

    Surgery for low-grade glioma infiltrating the central cerebral region: location as a predictive factor for neurological deficit, epileptological outcome and quality of life

    No full text
    OBJECT A main concern with regard to surgery for low-grade glioma (LGG, WHO Grade II) is maintenance of the patient's functional integrity. This concern is particularly relevant for gliomas in the central region, where damage can have grave repercussions. The authors evaluated postsurgical outcomes with regard to neurological deficits, seizures, and quality of life. METHODS Outcomes were compared for 33 patients with central LGG (central cohort) and a control cohort of 31 patients with frontal LGG (frontal cohort), all of whom had had medically intractable seizures before undergoing surgery with mapping while awake. All surgeries were performed in the period from February 2007 through April 2010 at the same institution. RESULTS For the central cohort, the median extent of resection was 92% (range 80%-97%), and for the frontal cohort, the median extent of resection was 93% (range 83%-98%; p = 1.0). Although the rate of mild neurological deficits was similar for both groups, seizure freedom (Engel Class I) was achieved for only 4 (12.1%) of 33 patients in the central cohort compared with 26 (83.9%) of 31 patients in the frontal cohort (p < 0.0001). The rate of return to work was lower for patients in the central cohort (4 [12.1%] of 33) than for the patients in the frontal cohort (28 [90.3%] of 31; p < 0.0001). CONCLUSIONS Resection of central LGG is feasible and safe when appropriate intraoperative mapping is used. However, seizure control for these patients remains poor, a finding that contrasts markedly with seizure control for patients in the frontal cohort and with that reported in the literature. For patients with central LGG, poor seizure control ultimately determines quality of life because most will not be able to return to work

    Endocrine pancreatic tumors in MSV-SV40 large T transgenic mice.

    No full text
    Mice carrying a Moloney murine sarcoma virus-(MSV) simian virus 40 large T transgene develop heritable tumors including endocrine pancreatic tumors. We have established several independent transgenic mouse lines expressing this transgene. One of these lines, designated MSV125, is characterized by the development of congenital cataracts and either pancreatic or brain tumors. The development and histopathology of the pancreatic tumors were studied by light microscopy and immunocytochemistry for large T antigen, neuron-specific enolase, insulin, proinsulin, glucagon, somatostatin, pancreatic polypeptide, gastrin, and serotonin. The 23 tumors examined were similar to human endocrine pancreatic tumors with respect to their macroscopic and histological features. We classified 91% of the tumors as insulinomas based on the predominance of insulin immunoreactivity. In newborn and young transgenic animals, nesidioblastosis and islet cell proliferation, consisting mostly of insulin containing beta cells, was obvious and persisted into adulthood. In transgenic animals more than 2 months old, islet hyperplasia and dysplasia predominated from which single tumors developed. Hyperplastic and dysplastic islets were composed mostly of beta cells. Large T antigen was detectable not only in tumor cells, but also in cells of normal and hyperplastic islets and in islet anlagen of newborn transgenic mice, indicating expression of the transgene in the endocrine part of the pancreas. Large T antigen-immunoreactivity was restricted to the beta cells. Insulinomas of the MSV-simian virus 40 T antigen-derived MSV125 transgenic mouse line may represent a valuable model for the study of the development and biology of insulinoma

    Multimetallic Gold–Iron Compounds Based on Aurated Ferrocenes

    No full text
    A family of aurated ferrocenes was prepared by a transmetallation reaction using ferroceneboronic acid derivatives. With this method, multimetallic ferrocenyl complexes [FcAu(PPh3)] {Fc = (η5-C5H4)FeCp} and [(µ-P-P)(AuFc)2] {P-P = dppe, dppf}, as well as 1,1′-diaurated ferrocenes [Fe(η5-C5H4AuPPh3)2] and [Fe{(η5-C5H4Au)}2(µ-P-P)] {P-P = dppe, dppf}, were obtained in high yields as air-stable orange materials. The compounds were characterised by spectroscopic methods, cyclic voltammetry and single-crystal X-ray diffraction. The reactivity of the dinuclear gold(I) complex in oxidative addition reactions is also reported
    corecore