78 research outputs found

    1st international experts' meeting on agitation. Conclusions regarding the current and ideal management paradigm of agitation

    Get PDF
    Agitation is a heterogeneous concept without a uniformly accepted definition, however, it is generally considered as a state of cognitive and motor hyperactivity characterized by excessive or inappropriate motor or verbal activity with marked emotional arousal. Not only the definition but also other aspects of agitated patients' care are still unsolved and need consensus and improvement. To help the discussion about agitation among experts and improve the identification, management, and treatment of agitation, the 1st International Experts' Meeting on Agitation was held in October 2016 in Madrid. It was attended by 20 experts from Europe and Latin America with broad experience in the clinical management of agitated patients. The present document summarizes the key conclusions of this meeting and highlights the need for an updated protocol of agitation management and treatment, the promotion of education and training among healthcare professionals to improve the care of these patients and the necessity to generate clinical data of agitated episodes

    The role of dendritic cell precursors in tumour vasculogenesis

    Get PDF
    In this review, we discuss the recent identification in vivo of a population of CD11c+ cells exhibiting simultaneous expression of both endothelial and dendritic cell markers, termed vascular leukocytes (VLCs). VLCs are highly represented in human ovarian carcinomas and, depending on the milieu, can assemble into functional blood vessels or act as antigen-presenting cells. The identification of dendritic cell precursors as bipotent cells has important implications for the physiopathology and therapy of tumours. VLCs emerge as a novel therapeutic target against tumour vascularisation

    Barrier Tissue Macrophages: Functional Adaptation to Environmental Challenges

    Get PDF
    Macrophages are found throughout the body, where they have crucial roles in tissue development, homeostasis and remodeling, as well as being sentinels of the innate immune system that can contribute to protective immunity and inflammation. Barrier tissues, such as the intestine, lung, skin and liver, are exposed constantly to the outside world, which places special demands on resident cell populations such as macrophages. Here we review the mounting evidence that although macrophages in different barrier tissues may be derived from distinct progenitors, their highly specific properties are shaped by the local environment, which allows them to adapt precisely to the needs of their anatomical niche. We discuss the properties of macrophages in steady-state barrier tissues, outline the factors that shape their differentiation and behavior and describe how macrophages change during protective immunity and inflammation

    Tissue-specific differentiation of colonic macrophages requires TGFÎČ receptor-mediated signaling

    Get PDF
    Intestinal macrophages (mφ) form one of the largest populations of mφ in the body and are vital for the maintenance of gut homeostasis. They have several unique properties and are derived from local differentiation of classical Ly6Chi monocytes, but the factors driving this tissue-specific process are not understood. Here we have used global transcriptomic analysis to identify a unique homeostatic signature of mature colonic mφ that is acquired as they differentiate in the mucosa. By comparing the analogous monocyte differentiation process found in the dermis, we identify TGFÎČ as an indispensable part of monocyte differentiation in the intestine and show that it enables mφ to adapt precisely to the requirements of their environment. Importantly, TGFÎČR signaling on mφ has a crucial role in regulating the accumulation of monocytes in the mucosa, via mechanisms that are distinct from those used by IL10

    Macrophage biology in development, homeostasis and disease

    Get PDF
    Macrophages the most plastic cells of the hematopoietic system are found in all tissues and exhibit great functional diversity. They have roles in development, homeostasis, tissue repair, and immunity. While anatomically distinct, resident tissue macrophages exhibit different transcriptional profiles, and functional capabilities, they are all required for the maintenance of homeostasis. However, these reparative and homeostatic functions can be subverted by chronic insults, resulting in a causal association of macrophages with disease states. In this review, we discuss how macrophages regulate normal physiology and development and provide several examples of their pathophysiologic roles in disease. We define the “hallmarks” of macrophages performing particular functions, taking into account novel insights into the diversity of their lineages, identity, and regulation. This diversity is essential to understand because macrophages have emerged as important therapeutic targets in many important human diseases

    Methylomic changes during conversion to psychosis

    No full text
    International audienceThe onset of psychosis is the consequence of complex interactions between genetic vulnerability to psychosis and response to environmental and/or maturational changes. Epigenetics is hypothesized to mediate the interplay between genes and environment leading to the onset of psychosis. We believe we performed the first longitudinal prospective study of genomic DNA methylation during psychotic transition in help-seeking young individuals referred to a specialized outpatient unit for early detection of psychosis and enrolled in a 1-year follow-up. We used Infinium HumanMethylation450 BeadChip array after bisulfite conversion and analyzed longitudinal variations in methylation at 411 947 cytosine-phosphate-guanine (CpG) sites. Conversion to psychosis was associated with specific methylation changes. Changes in DNA methylation were significantly different between converters and non-converters in two regions: one located in 1q21.1 and a cluster of six CpG located in GSTM5 gene promoter. Methylation data were confirmed by pyrosequencing in the same population. The 100 top CpGs associated with conversion to psychosis were subjected to exploratory analyses regarding the related gene networks and their capacity to distinguish between converters and non-converters. Cluster analysis showed that the top CpG sites correctly distinguished between converters and non-converters. In this first study of methylation during conversion to psychosis, we found that alterations preferentially occurred in gene promoters and pathways relevant for psychosis, including oxidative stress regulation, axon guidance and inflammatory pathways. Although independent replications are warranted to reach definitive conclusions, these results already support that longitudinal variations in DNA methylation may reflect the biological mechanisms that precipitate some prodromal individuals into full-blown psychosis, under the influence of environmental factors and maturational processes at adolescence

    Immunomodulation by Bifidobacterium infantis 35624 in the murine lamina propria requires retinoic acid-dependent and independent mechanisms

    Get PDF
    Appropriate dendritic cell processing of the microbiota promotes intestinal homeostasis and protects against aberrant inflammatory responses. Mucosal CD103(+) dendritic cells are able to produce retinoic acid from retinal, however their role in vivo and how they are influenced by specific microbial species has been poorly described. Bifidobacterium infantis 35624 (B. infantis) feeding to mice resulted in increased numbers of CD103(+)retinaldehyde dehydrogenase (RALDH)(+) dendritic cells within the lamina propria (LP). Foxp3(+) lymphocytes were also increased in the LP, while TH1 and TH17 subsets were decreased. 3,7-dimethyl-2,6-octadienal (citral) treatment of mice blocked the increase in CD103(+)RALDH(+) dendritic cells and the decrease in TH1 and TH17 lymphocytes, but not the increase in Foxp3(+) lymphocytes. B. infantis reduced the severity of DSS-induced colitis, associated with decreased TH1 and TH17 cells within the LP. Citral treatment confirmed that these effects were RALDH mediated. RALDH(+) dendritic cells decreased within the LP of control inflamed animals, while RALDH(+) dendritic cells numbers were maintained in the LP of B. infantis-fed mice. Thus, CD103(+)RALDH(+) LP dendritic cells are important cellular targets for microbiota-associated effects on mucosal immunoregulation
    • 

    corecore