119 research outputs found

    New insight into the atmospheric chloromethane budget gained using stable carbon isotope ratios

    No full text
    International audienceAtmospheric chloromethane (CH3Cl) plays an important role in stratospheric ozone destruction, but many uncertainties still exist regarding strengths of both sources and sinks and the processes leading to formation of this naturally occurring gas. Recent work has identified a novel chemical origin for CH3Cl, which can explain its production in a variety of terrestrial environments: the widespread structural component of plants, pectin, reacts readily with chloride ion to form CH3Cl at both ambient and elevated temperatures (Hamilton et al., 2003). It has been proposed that this abiotic chloride methylation process in terrestrial environments could be responsible for formation of a large proportion of atmospheric CH3Cl. However, more information is required to determine the global importance of this new source and its contribution to the atmospheric CH3Cl budget. A potentially powerful tool in studying the atmospheric CH3Cl budget is the use of stable carbon isotope ratios. In an accompanying paper it is reported that the reaction of CH3Cl with OH radical, the dominant sink for atmospheric CH3Cl, is accompanied by an unexpectedly large fractionation factor (Gola et al., 2005). Another recently published study shows that CH3Cl formed by the abiotic methylation process at ambient temperatures has a unique stable carbon isotope signature, extremely depleted in 13C, unequivocally distinguishing it from all other known sources (Keppler et al., 2004). Using these findings together with data existing in the literature, we here present three scenarios for an isotopic mass balance for atmospheric CH3Cl. Our calculations provide strong support for the proposal that the largest source of atmospheric CH3Cl (1800 to 2500 Gg yr-1) is the abiotic methylation of chloride in terrestrial ecosytems, primarily located in tropical and subtropical areas where turnover of biomass is highest. Furthermore our calculations also indicate that the microbial soil sink for CH3Cl is likely to be much larger (>1000 Gg yr-1) than that previously assumed

    New insight into the atmospheric chloromethane budget gained using gained using

    No full text
    International audienceAtmospheric chloromethane (CH3Cl) plays an important role in stratospheric ozone destruction, but many uncertainties still exist regarding strengths of both sources and sinks and the processes leading to formation of this naturally occurring gas. Recent work has identified a novel chemical origin for CH3Cl, which can explain its production in a variety of terrestrial environments: The widespread structural component of plants, pectin, reacts readily with chloride ion to form CH3Cl at both ambient and elevated temperatures (Hamilton et al., 2003). It has been proposed that this abiotic chloride methylation process in terrestrial environments could be responsible for formation of a large proportion of atmospheric CH3Cl. However, more information is required to determine the global importance of this new source and its contribution to the atmospheric CH3Cl budget. A potentially powerful tool in studying the atmospheric CH3Cl budget is the use of stable carbon isotope ratios. In an accompanying paper it is reported that the reaction of CH3Cl with OH radical, the dominant sink for atmospheric CH3Cl, is accompanied by an unexpectedly large fractionation factor (Gola et al., 2005). Another recently published study shows that CH3Cl formed by the abiotic methylation process at ambient temperatures has a unique stable carbon isotope signature, extremely depleted in 13C, unequivocally distinguishing it from all other known sources (Keppler et al., 2004). Using these findings together with data existing in the literature, we here present three scenarios for an isotopic mass balance for atmospheric CH3Cl. Our calculations provide strong support for the proposal that the bulk fraction of atmospheric CH3Cl (1.8 to 2.5Tg yr?1) is produced by an abiotic chloride methylation process in terrestrial ecosystems, primarily located in tropical and subtropical areas, where turnover of biomass is highest. Furthermore our calculations also indicate that the microbial soil sink for CH3Cl is likely to be much larger (>1Tg yr?1) than that previously assumed

    Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning

    Get PDF
    In this study, we identify a biomass-burning signal in molecular hydrogen (H<sub>2</sub>) over the Amazonian tropical rainforest. To quantify this signal, we measure the mixing ratios of H<sub>2</sub> and several other species as well as the H<sub>2</sub> isotopic composition in air samples that were collected in the BARCA (Balanço AtmosfĂ©rico Regional de Carbono na AmazĂŽnia) aircraft campaign during the dry season. We derive a relative H<sub>2</sub> emission ratio with respect to carbon monoxide (CO) of 0.31 ± 0.04 ppb ppb<sup>−1</sup> and an isotopic source signature of −280 ± 41&permil; in the air masses influenced by tropical biomass burning. In order to retrieve a clear source signal that is not influenced by the soil uptake of H<sub>2</sub>, we exclude samples from the atmospheric boundary layer. This procedure is supported by data from a global chemistry transport model. The &Delta;H<sub>2</sub> / &Delta;CO emission ratio is significantly lower than some earlier estimates for the tropical rainforest. In addition, our results confirm the lower values of the previously conflicting estimates of the H<sub>2</sub> isotopic source signature from biomass burning. These values for the emission ratio and isotopic source signatures of H<sub>2</sub> from tropical biomass burning can be used in future bottom-up and top-down approaches aiming to constrain the strength of the biomass-burning source for H<sub>2</sub>. Hitherto, these two quantities relied only on combustion experiments or on statistical relations, since no direct signal had been obtained from in-situ observations

    Methane emissions from floodplains in the Amazon Basin: challenges in developing a process-based model for global applications

    Get PDF
    Tropical wetlands are estimated to represent about 50% of the natural wetland methane (CH<sub>4</sub>) emissions and explain a large fraction of the observed CH<sub>4</sub> variability on timescales ranging from glacial–interglacial cycles to the currently observed year-to-year variability. Despite their importance, however, tropical wetlands are poorly represented in global models aiming to predict global CH<sub>4</sub> emissions. This publication documents a first step in the development of a process-based model of CH<sub>4</sub> emissions from tropical floodplains for global applications. For this purpose, the LPX-Bern Dynamic Global Vegetation Model (LPX hereafter) was slightly modified to represent floodplain hydrology, vegetation and associated CH<sub>4</sub> emissions. The extent of tropical floodplains was prescribed using output from the spatially explicit hydrology model PCR-GLOBWB. We introduced new plant functional types (PFTs) that explicitly represent floodplain vegetation. The PFT parameterizations were evaluated against available remote-sensing data sets (GLC2000 land cover and MODIS Net Primary Productivity). Simulated CH<sub>4</sub> flux densities were evaluated against field observations and regional flux inventories. Simulated CH<sub>4</sub> emissions at Amazon Basin scale were compared to model simulations performed in the WETCHIMP intercomparison project. We found that LPX reproduces the average magnitude of observed net CH<sub>4</sub> flux densities for the Amazon Basin. However, the model does not reproduce the variability between sites or between years within a site. Unfortunately, site information is too limited to attest or disprove some model features. At the Amazon Basin scale, our results underline the large uncertainty in the magnitude of wetland CH<sub>4</sub> emissions. Sensitivity analyses gave insights into the main drivers of floodplain CH<sub>4</sub> emission and their associated uncertainties. In particular, uncertainties in floodplain extent (i.e., difference between GLC2000 and PCR-GLOBWB output) modulate the simulated emissions by a factor of about 2. Our best estimates, using PCR-GLOBWB in combination with GLC2000, lead to simulated Amazon-integrated emissions of 44.4 ± 4.8 Tg yr<sup>−1</sup>. Additionally, the LPX emissions are highly sensitive to vegetation distribution. Two simulations with the same mean PFT cover, but different spatial distributions of grasslands within the basin, modulated emissions by about 20%. Correcting the LPX-simulated NPP using MODIS reduces the Amazon emissions by 11.3%. Finally, due to an intrinsic limitation of LPX to account for seasonality in floodplain extent, the model failed to reproduce the full dynamics in CH<sub>4</sub> emissions but we proposed solutions to this issue. The interannual variability (IAV) of the emissions increases by 90% if the IAV in floodplain extent is accounted for, but still remains lower than in most of the WETCHIMP models. While our model includes more mechanisms specific to tropical floodplains, we were unable to reduce the uncertainty in the magnitude of wetland CH<sub>4</sub> emissions of the Amazon Basin. Our results helped identify and prioritize directions towards more accurate estimates of tropical CH<sub>4</sub> emissions, and they stress the need for more research to constrain floodplain CH<sub>4</sub> emissions and their temporal variability, even before including other fundamental mechanisms such as floating macrophytes or lateral water fluxes

    New insight into the atmospheric chloromethane budget gained using stable carbon isotope ratios

    Get PDF
    Atmospheric chloromethane (CH3Cl) plays an important role in stratospheric ozone destruction, but many uncertainties still exist regarding strengths of both sources and sinks and the processes leading to formation of this naturally occurring gas. Recent work has identified a novel chemical origin for CH3Cl, which can explain its production in a variety of terrestrial environments: the widespread structural component of plants, pectin, reacts readily with chloride ion to form CH3Cl at both ambient and elevated temperatures (Hamilton et al., 2003). It has been proposed that this abiotic chloride methylation process in terrestrial environments could be responsible for formation of a large proportion of atmospheric CH3Cl. However, more information is required to determine the global importance of this new source and its contribution to the atmospheric CH3Cl budget. A potentially powerful tool in studying the atmospheric CH3Cl budget is the use of stable carbon isotope ratios. In an accompanying paper it is reported that the reaction of CH3Cl with OH radical, the dominant sink for atmospheric CH3Cl, is accompanied by an unexpectedly large fractionation factor (Gola et al., 2005). Another recently published study shows that CH3Cl formed by the abiotic methylation process at ambient temperatures has a unique stable carbon isotope signature, extremely depleted in 13C, unequivocally distinguishing it from all other known sources (Keppler et al., 2004). Using these findings together with data existing in the literature, we here present three scenarios for an isotopic mass balance for atmospheric CH3Cl. Our calculations provide strong support for the proposal that the largest source of atmospheric CH3Cl (1800 to 2500 Gg yr-1) is the abiotic methylation of chloride in terrestrial ecosytems, primarily located in tropical and subtropical areas where turnover of biomass is highest. Furthermore our calculations also indicate that the microbial soil sink for CH3Cl is likely to be much larger (>1000 Gg yr-1) than that previously assumed

    Presence of nanoplastics in rural and remote surface waters

    Get PDF
    It is now established that microplastics are a pervasive presence in aquatic and terrestrial ecosystems. The same is assumed to be true for nanoplastics but data are lacking due to technical difficulties associated with sample analysis. Here, we measured nanoplastics in waterbodies at two contrasting sites: remote Siberian Arctic tundra and a forest landscape in southern Sweden. Nanoplastics were detected in all sampled Swedish lakes (n = 7) and streams (n = 4) (mean concentration = 563 ”g l−1) and four polymer types were identified (polyethylene, polyvinyl chloride (PVC), polypropylene, polyethylene terephthalate). In Siberia nanoplastics were detected in 7/12 sampled lakes, ponds and surface flooding, but only two polymer types were detected (PVC and polystyrene) and concentrations were lower (mean 51 ”g l−1). Based on back-calculation of air mass trajectories and particle dispersion, we infer that nanoplastics arrive at both sites by aerial deposition from local and regional sources. Our results suggest that nanoplastics may be a near-ubiquitous presence even in remote ecosystems

    A reassessment of the discrepancies in the annual variation of ήD-H₂O in the tropical lower stratosphere between the MIPAS and ACE-FTS satellite data sets

    Get PDF
    The annual variation of ÎŽD in the tropical lower stratosphere is a critical indicator for the relative importance of different processes contributing to the transport of water vapour through the cold tropical tropopause region into the stratosphere. Distinct observational discrepancies of the ÎŽD annual variation were visible in the works of Steinwagner et al. (2010) and Randel et al. (2012). Steinwagner et al. (2010) analysed MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) observations retrieved with the IMK/IAA (Institut fĂŒr Meteorologie und Klimaforschung in Karlsruhe, Germany, in collaboration with the Instituto de AstrofĂ­sica de AndalucĂ­a in Granada, Spain) processor, while Randel et al. (2012) focused on ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer) observations. Here we reassess the discrepancies based on newer MIPAS (IMK/IAA) and ACE-FTS data sets, also showing for completeness results from SMR (Sub-Millimetre Radiometer) observations and a ECHAM/MESSy (European Centre for Medium-Range Weather Forecasts Hamburg and Modular Earth Submodel System) Atmospheric Chemistry (EMAC) simulation (Eichinger et al., 2015b). Similar to the old analyses, the MIPAS data set yields a pronounced annual variation (maximum about 75 ‰), while that derived from the ACE-FTS data set is rather weak (maximum about 25 ‰). While all data sets exhibit the phase progression typical for the tape recorder, the annual maximum in the ACE-FTS data set precedes that in the MIPAS data set by 2 to 3 months. We critically consider several possible reasons for the observed discrepancies, focusing primarily on the MIPAS data set. We show that the ÎŽD annual variation in the MIPAS data up to an altitude of 40 hPa is substantially impacted by a “start altitude effect”, i.e. dependency between the lowermost altitude where MIPAS retrievals are possible and retrieved data at higher altitudes. In itself this effect does not explain the differences with the ACE-FTS data. In addition, there is a mismatch in the vertical resolution of the MIPAS HDO and H2O data (being consistently better for HDO), which actually results in an artificial tape-recorder-like signal in ÎŽD. Considering these MIPAS characteristics largely removes any discrepancies between the MIPAS and ACE-FTS data sets and shows that the MIPAS data are consistent with a ÎŽD tape recorder signal with an amplitude of about 25 ‰ in the lowermost stratosphere

    Inverse modeling of GOSAT-retrieved ratios of total column CH4 and CO2 for 2009 and 2010

    Get PDF
    This study investigates the constraint provided by greenhouse gas measurements from space on surface fluxes. Imperfect knowledge of the light path through the atmosphere, arising from scattering by clouds and aerosols, can create biases in column measurements retrieved from space. To minimize the impact of such biases, ratios of total column retrieved CH4 and CO2 (Xratio) have been used. We apply the ratio inversion method described in Pandey et al. (2015) to retrievals from the Greenhouse Gases Observing SATellite (GOSAT). The ratio inversion method uses the measured Xratio as a weak constraint on CO2 fluxes. In contrast, the more common approach of inverting proxy CH4 retrievals (Frankenberg et al., 2005) prescribes atmospheric CO2 fields and optimizes only CH4 fluxes. The TM5–4DVAR (Tracer Transport Model version 5–variational data assimilation system) inverse modeling system is used to simultaneously optimize the fluxes of CH4 and CO2 for 2009 and 2010. The results are compared to proxy inversions using model-derived CO2 mixing ratios (XCO2model) from CarbonTracker and the Monitoring Atmospheric Composition and Climate (MACC) Reanalysis CO2 product. The performance of the inverse models is evaluated using measurements from three aircraft measurement projects. Xratio and XCO2model are compared with TCCON retrievals to quantify the relative importance of errors in these components of the proxy XCH4 retrieval (XCH4proxy). We find that the retrieval errors in Xratio (mean  =  0.61 %) are generally larger than the errors in XCO2model (mean  =  0.24 and 0.01 % for CarbonTracker and MACC, respectively). On the annual timescale, the CH4 fluxes from the different satellite inversions are generally in agreement with each other, suggesting that errors in XCO2model do not limit the overall accuracy of the CH4 flux estimates. On the seasonal timescale, however, larger differences are found due to uncertainties in XCO2model, particularly over Australia and in the tropics. The ratio method stays closer to the a priori CH4 flux in these regions, because it is capable of simultaneously adjusting the CO2 fluxes. Over tropical South America, comparison to independent measurements shows that CO2 fields derived from the ratio method are less realistic than those used in the proxy method. However, the CH4 fluxes are more realistic, because the impact of unaccounted systematic uncertainties is more evenly distributed between CO2 and CH4. The ratio inversion estimates an enhanced CO2 release from tropical South America during the dry season of 2010, which is in accordance with the findings of Gatti et al. (2014) and Van der Laan et al. (2015). The performance of the ratio method is encouraging, because despite the added nonlinearity due to the assimilation of Xratio and the significant increase in the degree of freedom by optimizing CO2 fluxes, still consistent results are obtained with respect to other CH4 inversions
    • 

    corecore