211 research outputs found

    Searching for galaxy clusters in the VST-KiDS Survey

    Get PDF
    We present the methods and first results of the search for galaxy clusters in the Kilo Degree Survey (KiDS). The adopted algorithm and the criterium for selecting the member galaxies are illustrated. Here we report the preliminary results obtained over a small area (7 sq. degrees), and the comparison of our cluster candidates with those found in the RedMapper and SZ Planck catalogues; the analysis to a larger area (148 sq. degrees) is currently in progress. By the KiDS cluster search, we expect to increase the completeness of the clusters catalogue to z = 0.6-0.7 compared to RedMapper.Comment: 5 pages, 4 figures, to be published in the Proceedings of the Conference "The Universe of Digital Sky Surveys", Naples, November 25-28 201

    The distribution of satellites around massive galaxies at 1<z<3 in ZFOURGE/CANDELS: dependence on star formation activity

    Get PDF
    We study the statistical distribution of satellites around star-forming and quiescent central galaxies at 1<z<3 using imaging from the FourStar Galaxy Evolution Survey (ZFOURGE) and the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS). The deep near-IR data select satellites down to log(M/M)>9\log(M/M_\odot)>9 at z<3. The radial satellite distribution around centrals is consistent with a projected NFW profile. Massive quiescent centrals, log(M/M)>10.78\log(M/M_\odot)>10.78, have \sim2 times the number of satellites compared to star-forming centrals with a significance of 2.7σ\sigma even after accounting for differences in the centrals' stellar-mass distributions. We find no statistical difference in the satellite distributions of intermediate-mass quiescent and star-forming centrals, 10.48<log(M/M)<10.7810.48<\log(M/M_\odot)<10.78. Comparing to the Guo2011 semi-analytic model, the excess number of satellites indicates that quiescent centrals have halo masses 0.3 dex larger than star-forming centrals, even when the stellar-mass distributions are fixed. We use a simple toy model that relates halo mass and quenching, which roughly reproduces the observed quenched fractions and the differences in halo mass between star-forming and quenched galaxies only if galaxies have a quenching probability that increases with halo mass from \sim0 for log(Mh/M)\log(M_h/M_\odot)\sim11 to \sim1 for log(Mh/M)\log(M_h/M_\odot)\sim13.5. A single halo-mass quenching threshold is unable to reproduce the quiescent fraction and satellite distribution of centrals. Therefore, while halo quenching may be an important mechanism, it is unlikely to be the only factor driving quenching. It remains unclear why a high fraction of centrals remain star-forming even in relatively massive halos.Comment: 19 pages, 17 figures, accepted by ApJ. Information on ZFOURGE can be found at http://zfourge.tamu.ed

    The cosmological analysis of X-ray cluster surveys: I- A new method for interpreting number counts

    Full text link
    We present a new method aiming to simplify the cosmological analysis of X-ray cluster surveys. It is based on purely instrumental observable quantities, considered in a two-dimensional X-ray colour-magnitude diagram (hardness ratio versus count-rate). The basic principle is that, even in rather shallow surveys, substantial information on cluster redshift and temperature is present in the raw X-ray data and can be statistically extracted; in parallel, such diagrams can be readily predicted from an ab initio cosmological modeling. We illustrate the methodology for the case of a 100 deg2 XMM survey having a sensitivity of ~10^{-14} ergs/s/cm^2 and fit at the same time, the survey selection function, the cluster evolutionary scaling-relations and the cosmology; our sole assumption -- driven by the limited size of the sample considered in the case-study -- is that the local cluster scaling relations are known. We devote special care to the realistic modeling of the count-rate measurement uncertainties and evaluate the potential of the method via a Fisher analysis. In the absence of individual cluster redshifts, the CR-HR method appears to be much more efficient than the traditional approach based on cluster counts (i.e. dn/dz, requiring redshifts). In the case where redshifts are available, our method performs similarly as the traditional mass function (dn/dM/dz) for the purely cosmological parameters, but better constrains parameters defining the cluster scaling relations and their evolution. A further practical advantage of the CR-HR method is its simplicity : this fully top-down approach totally bypasses the tedious steps consisting in deriving cluster masses from X-ray temperature measurements.Comment: 18 pages, 15 figures, 3 tables. Accepted for publication in MNRAS (minor changes with respect to previous version

    ICF components of corresponding outcome measures in flexor tendon rehabilitation – a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The International Classification of Functioning, Disability and Health (ICF) delivers a holistic approach to health conditions. The objective of the present study is to provide an overview of flexor tendon rehabilitation outcome measures with respect to ICF components. Furthermore, it aims to investigate to which extent current assessments measure aspects of health according to these components primarily focussing on <it>activity </it>and <it>participation</it>.</p> <p>Methods</p> <p>A systematic literature review was conducted to identify all studies meeting the inclusion criteria. Studies were only included if they assessed more than <it>body function and body structure </it>and referred to the ICF components <it>activity </it>and <it>participation</it>. The outcome measures were analysed and their linkage to the ICF components were investigated to examine to which degree aspects of health outcome as defined by the ICF were considered.</p> <p>Results</p> <p>As anticipated, the application of outcome measures after flexor tendon repair is non conform. In many studies the emphasis still lies on physical impairment neglecting activity limitations and participation restrictions.</p> <p>Aspects of health after flexor tendon repair could be assessed more adequately and cover patients' needs more sufficiently by choosing outcome measures which refer to all aspects of functioning.</p> <p>Conclusion</p> <p>The ICF can help to identify aspects of health which are not being considered. The ICF can help promote further development of adequate outcome measures including activity limitation and participation restrictions by targeting patient centred goals and respecting patients' needs.</p

    Food Quality Affects Secondary Consumers Even at Low Quantities: An Experimental Test with Larval European Lobster

    Get PDF
    The issues of food quality and food quantity are crucial for trophic interactions. Although most research has focussed on the primary producer – herbivore link, recent studies have shown that quality effects at the bottom of the food web propagate to higher trophic levels. Negative effects of poor food quality have almost exclusively been demonstrated at higher food quantities. Whether these negative effects have the same impact at low food availability in situations where the majority if not all of the resources are channelled into routine metabolism, is under debate. In this study a tri-trophic food chain was designed, consisting of the algae Rhodomonas salina, the copepod Acartia tonsa and freshly hatched larvae of the European lobster Homarus gammarus. The lobster larvae were presented with food of two different qualities (C∶P ratios) and four different quantities to investigate the combined effects of food quality and quantity. Our results show that the quality of food has an impact on the condition of lobster larvae even at very low food quantities. Food with a lower C∶P content resulted in higher condition of the lobster larvae regardless of the quantity of food. These interacting effects of food quality and food quantity can have far reaching consequences for ecosystem productivity

    ZFOURGE/CANDELS: On the Evolution of \u3cem\u3eM\u3c/em\u3e* Galaxy Progenitors from \u3cem\u3ez\u3c/em\u3e=3 to 0.5*

    Get PDF
    Galaxies with stellar masses near M* contain the majority of stellar mass in the universe, and are therefore of special interest in the study of galaxy evolution. The Milky Way (MW) and Andromeda (M31) have present-day stellar masses near M*, at 5 × 1010 M ☉ (defined here to be MW-mass) and 1011 M ☉ (defined to be M31-mass). We study the typical progenitors of these galaxies using the FOURSTAR Galaxy Evolution Survey (ZFOURGE). ZFOURGE is a deep medium-band near-IR imaging survey, which is sensitive to the progenitors of these galaxies out to z ~ 3. We use abundance-matching techniques to identify the main progenitors of these galaxies at higher redshifts. We measure the evolution in the stellar mass, rest-frame colors, morphologies, far-IR luminosities, and star formation rates, combining our deep multiwavelength imaging with near-IR Hubble Space Telescope imaging from Cosmic Near-IR Deep Extragalactic Legacy Survey (CANDELS), and Spitzer and Herschel far-IR imaging from Great Observatories Origins Deep Survey-Herschel and CANDELS-Herschel. The typical MW-mass and M31-mass progenitors passed through the same evolution stages, evolving from blue, star-forming disk galaxies at the earliest stages to redder dust-obscured IR-luminous galaxies in intermediate stages and to red, more quiescent galaxies at their latest stages. The progenitors of the MW-mass galaxies reached each evolutionary stage at later times (lower redshifts) and with stellar masses that are a factor of two to three lower than the progenitors of the M31-mass galaxies. The process driving this evolution, including the suppression of star formation in present-day M* galaxies, requires an evolving stellar-mass/halo-mass ratio and/or evolving halo-mass threshold for quiescent galaxies. The effective size and SFRs imply that the baryonic cold-gas fractions drop as galaxies evolve from high redshift to z ~ 0 and are strongly anticorrelated with an increase in the Sérsic index. Therefore, the growth of galaxy bulges in M* galaxies corresponds to a rapid decline in the galaxy gas fractions and/or a decrease in the star formation efficiency

    Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato

    Get PDF
    Phenylpropanoids comprise an important class of plant secondary metabolites. A number of transcription factors have been used to upregulate-specific branches of phenylpropanoid metabolism, but by far the most effective has been the fruit-specific expression of AtMYB12 in tomato, which resulted in as much as 10% of fruit dry weight accumulating as flavonols and hydroxycinnamates. We show that AtMYB12 not only increases the demand of flavonoid biosynthesis but also increases the supply of carbon from primary metabolism, energy and reducing power, which may fuel the shikimate and phenylalanine biosynthetic pathways to supply more aromatic amino acids for secondary metabolism. AtMYB12 directly binds promoters of genes encoding enzymes of primary metabolism. The enhanced supply of precursors, energy and reducing power achieved by AtMYB12 expression can be harnessed to engineer high levels of novel phenylpropanoids in tomato fruit, offering an effective production system for bioactives and other high value ingredients

    Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lignification of the fruit endocarp layer occurs in many angiosperms and plays a critical role in seed protection and dispersal. This process has been extensively studied with relationship to pod shatter or dehiscence in <it>Arabidopsis</it>. Dehiscence is controlled by a set of transcription factors that define the fruit tissue layers and whether or not they lignify. In contrast, relatively little is known about similar processes in other plants such as stone fruits which contain an extremely hard lignified endocarp or stone surrounding a single seed.</p> <p>Results</p> <p>Here we show that lignin deposition in peach initiates near the blossom end within the endocarp layer and proceeds in a distinct spatial-temporal pattern. Microarray studies using a developmental series from young fruits identified a sharp and transient induction of phenylpropanoid, lignin and flavonoid pathway genes concurrent with lignification and subsequent stone hardening. Quantitative polymerase chain reaction studies revealed that specific phenylpropanoid (phenylalanine ammonia-lyase and cinnamate 4-hydroxylase) and lignin (caffeoyl-CoA O-methyltransferase, peroxidase and laccase) pathway genes were induced in the endocarp layer over a 10 day time period, while two lignin genes (<it>p-</it>coumarate 3-hydroxylase and cinnamoyl CoA reductase) were co-regulated with flavonoid pathway genes (chalcone synthase, dihydroflavanol 4-reductase, leucoanthocyanidin dioxygen-ase and flavanone-3-hydrosylase) which were mesocarp and exocarp specific. Analysis of other fruit development expression studies revealed that flavonoid pathway induction is conserved in the related Rosaceae species apple while lignin pathway induction is not. The transcription factor expression of peach genes homologous to known endocarp determinant genes in <it>Arabidopsis </it>including <it>SHATTERPROOF</it>, <it>SEEDSTCK </it>and <it>NAC SECONDARY WALL THICENING PROMOTING FACTOR 1 </it>were found to be specifically expressed in the endocarp while the negative regulator <it>FRUITFU</it>L predominated in exocarp and mesocarp.</p> <p>Conclusions</p> <p>Collectively, the data suggests, first, that the process of endocarp determination and differentiation in peach and <it>Arabidopsis </it>share common regulators and, secondly, reveals a previously unknown coordination of competing lignin and flavonoid biosynthetic pathways during early fruit development.</p
    corecore