43 research outputs found

    Coronary Artery Plaque Characterization from CCTA Scans Using Deep Learning and Radiomics

    Get PDF
    Assessing coronary artery plaque segments in coronary CT angiography scans is an important task to improve patient management and clinical outcomes, as it can help to decide whether invasive investigation and treatment are necessary. In this work, we present three machine learning approaches capable of performing this task. The first approach is based on radiomics, where a plaque segmentation is used to calculate various shape-, intensity- and texture-based features under different image transformations. A second approach is based on deep learning and relies on centerline extraction as sole prerequisite. In the third approach, we fuse the deep learning approach with radiomic features. On our data the methods reached similar scores as simulated fractional flow reserve (FFR) measurements, which - in contrast to our methods - requires an exact segmentation of the whole coronary tree and often time-consuming manual interaction. In literature, the performance of simulated FFR reaches an AUC between 0.79–0.93 predicting an abnormal invasive FFR that demands revascularization. The radiomics approach achieves an AUC of 0.84, the deep learning approach 0.86 and the combined method 0.88 for predicting the revascularization decision directly. While all three proposed methods can be determined within seconds, the FFR simulation typically takes several minutes. Provided representative training data in sufficient quantities, we believe that the presented methods can be used to create systems for fully automatic non-invasive risk assessment for a variety of adverse cardiac events

    Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.

    Get PDF
    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP

    A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk

    Get PDF
    Combined analyses of gene networks and DNA sequence variation can provide new insights into the aetiology of common diseases that may not be apparent from genome-wide association studies alone. Recent advances in rat genomics are facilitating systems-genetics approaches. Here we report the use of integrated genome-wide approaches across seven rat tissues to identify gene networks and the loci underlying their regulation. We defined an interferon regulatory factor 7 (IRF7)-driven inflammatory network (IDIN) enriched for viral response genes, which represents a molecular biomarker for macrophages and which was regulated in multiple tissues by a locus on rat chromosome 15q25. We show that Epstein-Barr virus induced gene 2 (Ebi2, also known as Gpr183), which lies at this locus and controls B lymphocyte migration, is expressed in macrophages and regulates the IDIN. The human orthologous locus on chromosome 13q32 controlled the human equivalent of the IDIN, which was conserved in monocytes. IDIN genes were more likely to associate with susceptibility to type 1 diabetes (T1D)-a macrophage-associated autoimmune disease-than randomly selected immune response genes (P = 8.85 x 10(-6)). The human locus controlling the IDIN was associated with the risk of T1D at single nucleotide polymorphism rs9585056 (P = 7.0 x 10(-10); odds ratio, 1.15), which was one of five single nucleotide polymorphisms in this region associated with EBI2 (GPR183) expression. These data implicate IRF7 network genes and their regulatory locus in the pathogenesis of T1D

    Characterization of Glucocorticoid Binding Capacity in Human Mononuclear Lymphocytes: Increase by Metyrapone is Prevented by Dexamethasone Pretreatment

    Get PDF
    Autoregulation of receptor systems by their own ligands is a well established biological phenomenon. While down-regulation of the glucocorticoid binding capacity by glucocorticoids has been shown in animals and humans, data on up-regulation processes in humans are lacking. To further explore glucocorticoid receptor plasticity in relation to endogenous ligands, glucocorticoid binding parameters were assessed in 15 healthy controls before and after oral administration of 1.5 g metyrapone with and without dexamethasone pretreatment. Administration of metyrapone resulted in blockade of the feedback of the hypothalamic-pituitary-adrenal system as shown by the rise in adrenocorticotropin levels, while pretreatment with 1 mg dexamethasone completely suppressed adrenocorticotropin concentrations. Glucocorticoid binding sites per lymphocyte exhibited an increase of 63% following metyrapone administration, which was prevented by dexamethasone pretreatment. Comparison of morning and afternoon glucocorticoid binding sites per cell in 11 healthy volunteers further revealed a diurnal rhythm of glucocorticoid receptor sites. These data suggest that human lymphocyte glucocorticoid receptors are under autoregulatory control
    corecore