165 research outputs found
A whole-cell biosensor for the detection of gold
Geochemical exploration for gold (Au) is becoming increasingly important to the mining industry. Current processes for Au analyses require sampling materials to be taken from often remote localities. Samples are then transported to a laboratory equipped with suitable analytical facilities, such as Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) or Instrumental Neutron Activation Analysis (INAA). Determining the concentration of Au in samples may take several weeks, leading to long delays in exploration campaigns. Hence, a method for the on-site analysis of Au, such as a biosensor, will greatly benefit the exploration industry. The golTSB genes from Salmonella enterica serovar typhimurium are selectively induced by Au(I/III)-complexes. In the present study, the golTSB operon with a reporter gene, lacZ, was introduced into Escherichia coli. The induction of golTSB::lacZ with Au(I/III)-complexes was tested using a colorimetric ÎČ-galactosidase and an electrochemical assay. Measurements of the ÎČ-galactosidase activity for concentrations of both Au(I)- and Au(III)-complexes ranging from 0.1 to 5 ”M (equivalent to 20 to 1000 ng gâ»Âč or parts-per-billion (ppb)) were accurately quantified. When testing the ability of the biosensor to detect Au(I/III)-complexes(aq) in the presence of other metal ions (Ag(I), Cu(II), Fe(III), Ni(II), Co(II), Zn, As(III), Pb(II), Sb(III) or Bi(III)), cross-reactivity was observed, i.e. the amount of Au measured was either under- or over-estimated. To assess if the biosensor would work with natural samples, soils with different physiochemical properties were spiked with Au-complexes. Subsequently, a selective extraction using 1 M thiosulfate was applied to extract the Au. The results showed that Au could be measured in these extracts with the same accuracy as ICP-MS (P<0.05). This demonstrates that by combining selective extraction with the biosensor system the concentration of Au can be accurately measured, down to a quantification limit of 20 ppb (0.1 ”M) and a detection limit of 2 ppb (0.01 ”M).Carla M. Zammit, Davide Quaranta, Shane Gibson, Anita J. Zaitouna, Christine Ta, JoĂ«l Brugger, Rebecca Y. Lai, Gregor Grass, Frank Reit
Does the engineering culture in UK higher education advance womenâs careers?
Current research suggests that increases in the number of women studying engineering and related courses have not been matched by a similar increase in women engineering professionals. This suggests that although women are attracted to engineering, their experiences in higher education (HE) discourage them from pursuing their chosen career path. The paper explores whether the masculine culture of the engineering sector permeates the culture and curriculum in engineering HE, and if it does, what impact this has on women engineering students. This is achieved through semi-structured, qualitative interviews with a range of female engineering students from both the pre and post 1992 university sectors. Findings indicate that while women are not deterred from pursuing their chosen engineering career, the culture and structure of the engineering education system has been designed for a male audience. This suggests that engineering HE does not benefit most female students to the same extent as male students. It is recommended
that HE engineering must review its structure, culture, practices and curriculum if it is to retain female engineering graduates and to attract more women into the sector. This paper fulfils an identified gap in research on women in engineering and will be of interest to university engineering departments and faculties and the Engineering Council, as well as to those in the fields of social policy, education and equal opportunities
Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up
Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished, before installation, with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5% over most of the barrel ECAL. The best intercalibration precision is expected to come from the analysis of events collected in situ during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were investigated
Characterisation of the muon beams for the Muon Ionisation Cooling Experiment
A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.2â2.3 Ïâmm-rad horizontally and 0.6â1.0 Ïâmm-rad vertically, a horizontal dispersion of 90â190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE
Ageing Simulation in Health and Social Care Education: A mixed methods systematic review
Abstract
Aim: To identify, evaluate and summarise evidence from qualitative, quantitative and mixed method studies conducted utilising age-suits or other age simulation equipment, with health and social care students.
Design: Convergent segregated mixed method review design as outlined by the Johanna Briggs Institute
Data Sources: CINAHL (+ with Full Text), MEDLINE, PsycINFO, PubMed, SocINDEX, Web of Science, Cochrane Library, Emerald Insight, Proquest nursing, Science Direct, Wiley Online and BioMed Central (January 2000 â January 2020)
Review methods: Convergent segregated synthesis was used to synthesise evidence from the studies, and the MERSQI checklist used to appraise quality.
Results: A total of 23 studies were reviewed: one randomised control, two post-test only randomised control, three quasi-experimental, 15 one-group pre / post studies and two qualitative studies. Of the seventeen studies carrying out inferential statistics on attitude scores post intervention, 11 reported an improvement, three indicated no significant change and three reported worsening scores. Key themes included use of appropriate scales, type of equipment utilised, location and length of interactions, debriefing, and contextualisation of interventions in broader teaching.
Conclusion: The impact of ageing simulation interventions on health and social care studentâs attitudes to older people was predominantly positive. However, further high-quality research is warranted to understand the optimal use of such interventions within the context of healthcare for a growing ageing population.
Impact: It is important health and social care staff have appropriate knowledge and training to enable them to provide high quality care to older people, and challenge potential ageism in the system. This review adds to the body of work around the use of simulation and experiential learning to educate health and social care students regarding ageing and ageism. It also offers recommendations for using ageing simulations effectively to inform attitudes of prospective professionals who will influence future health and social care.
Keywords: Simulation, Ageing, Age-suit, Nursing, Health and social care, Education, Attitudes, Empathy, Experiential learning, Systematic revie
Prescription of secondary prevention medications, lifestyle advice, and referral to rehabilitation among acute coronary syndrome inpatients: results from a large prospective audit in Australia and New Zealand
OBJECTIVE: To evaluate the proportion of patients hospitalised with acute coronary syndrome (ACS) in Australia and New Zealand who received optimal inpatient preventive care and to identify factors associated with preventive care. METHODS: All patients hospitalised bi-nationally with ACS were identified between 14-27 May 2012. Optimal in-hospital preventive care was defined as having received lifestyle advice, referral to rehabilitation, and prescription of secondary prevention pharmacotherapies. Multilevel multivariable logistic regression was used to determine factors associated with receipt of optimal preventive care. RESULTS: For the 2299 ACS survivors, mean (SD) age was 69 (13) years, 46% were referred to rehabilitation, 65% were discharged on sufficient preventive medications, and 27% received optimal preventive care. Diagnosis of ST elevation myocardial infarction (OR: 2.64 [95% CI: 1.88-3.71]; p<0.001) and non-ST elevation myocardial infarction (OR: 1.99 [95% CI: 1.52-2.61]; p<0.001) compared with a diagnosis of unstable angina, having a percutaneous coronary intervention (PCI) (OR: 4.71 [95% CI: 3.67-6.11]; p<0.001) or coronary bypass (OR: 2.10 [95% CI: 1.21-3.60]; p=0.011) during the admission or history of hypertension (OR:1.36 [95% CI: 1.06-1.75]; p=0.017) were associated with greater exposure to preventive care. Age over 70 years (OR:0.53 [95% CI: 0.35-0.79]; p=0.002) or admission to a private hospital (OR:0.59 [95% CI: 0.42-0.84]; p=0.003) were associated with lower exposure to preventive care. CONCLUSIONS: Only one-quarter of ACS patients received optimal secondary prevention in-hospital. Patients with UA, who did not have PCI, were over 70â
years or were admitted to a private hospital, were less likely to receive optimal care.Julie Redfern, Karice Hyun, Derek P Chew, Carolyn Astley, Clara Chow, Bernadette Aliprandi-Costa, Tegwen Howell, Bridie Carr, Karen Lintern, Isuru Ranasinghe, Kellie Nallaiah, Fiona Turnbull, Cate Ferry, Chris Hammett, Chris J Ellis, John French, David Brieger, Tom Briff
Electron-muon ranger: performance in the MICE muon beam
The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100â280 MeV/c
Electron-muon ranger: performance in the MICE muon beam
The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100â280 MeV/c
Pion contamination in the MICE muon beam
The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than 1\% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is at 90\% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.Department of Energy and National Science Foundation (U.S.A.), the Instituto Nazionale di Fisica Nucleare (Italy), the Science and Technology Facilities Council (U.K.), the European Community under the European Commission Framework Programme 7 (AIDA project, grant agreement no. 262025, TIARA project, grant agreement no. 261905, and EuCARD), the Japan Society for the Promotion of Science and the Swiss National Science Foundation, in the framework of the SCOPES programme
- âŠ