46 research outputs found

    An urban Blitz with a twist: rapid biodiversity assessment using aquatic environmental DNA

    Get PDF
    As global biodiversity declines, there is an increasing need to create an educated and engaged society. Having people of all ages participate in measuring biodiversity where they live helps to create awareness. Recently, the use of environmental DNA (eDNA) for biodiversity surveys has gained momentum. Here, we explore whether sampling eDNA and sequencing it can be used as a means of rapidly surveying urban biodiversity for educational purposes. We sampled 2 × 1 L of water from each of 15 locations in the city of Trondheim, Norway, including a variety of freshwater, marine, and brackish habitats. DNA was extracted, amplified in triplicate targeting the barcoding fragment of COI gene, and sequenced. The obtained data were analyzed on the novel mBRAVE platform, an online open‐access software and computing resource. The water samples were collected in 2 days by two people, and the laboratory analysis was completed in 5 days by one person. Overall, we detected the presence of 506 BINs identified as belonging to 435 taxa, representing at least 265 putative species. On average, only 5.4% of the taxa were shared among six replicates per site. Based on the observed diversity, three distinct clusters were detected and related to the geographic distribution of sites. There were some taxa shared between the habitats, with a substantial presence of terrestrial biota. Here we propose a new form of BioBlitz, where with noninvasive sampling effort combined with swift processing and straightforward online analyses, hundreds of species can be detected. Thus, using eDNA analysis of water is useful for rapid biodiversity surveys and valuable for educational purposes. We show that rapid eDNA surveys, combined with openly available services and software, can be used as an educational tool to raise awareness about the importance of biodiversity.© 2020 The Authors. Environmental DNA published by John Wiley & Sons Ltd This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. The attached file is the published pdf

    Evidence for rangewide panmixia despite multiple barriers to dispersal in a marine mussel

    Get PDF
    Oceanographic features shape the distributional and genetic patterns of marine species by interrupting or promoting connections among populations. Although general patterns commonly arise, distributional ranges and genetic structure are species-specific and do not always comply with the expected trends. By applying a multimarker genetic approach combined with Lagrangian particle simulations (LPS) we tested the hypothesis that oceanographic features along northeastern Atlantic and Mediterranean shores influence dispersal potential and genetic structure of the intertidal mussel Perna perna. Additionally, by performing environmental niche modelling we assessed the potential and realized niche of P. perna along its entire native distributional range and the environmental factors that best explain its realized distribution. Perna perna showed evidence of panmixia across > 4,000 km despite several oceanographic breaking points detected by LPS. This is probably the result of a combination of life history traits, continuous habitat availability and stepping-stone dynamics. Moreover, the niche modelling framework depicted minimum sea surface temperatures (SST) as the major factor shaping P. perna distributional range limits along its native areas. Forthcoming warming SST is expected to further change these limits and allow the species to expand its range polewards though this may be accompanied by retreat from warmer areas.Fundacao para a Ciencia e Tecnologia (FCT-MEC, Portugal) [UID/Multi/04326/2013, IF/01413/2014/CP1217/CT0004]; South African Research Chairs Initiative (SARChI) of the Department of Science and Technology; National Research Foundation; South African National Research Foundation (NRF); Portuguese Fundacao para a Ciencia e Tecnologia (FCT) [SFRH/BPD/85040/2012, SFRH/BPD/111003/2015]info:eu-repo/semantics/publishedVersio

    Nachweis einer niedermolekularen Substanz mit LH-Aktivit�t im menschlichen Serum

    No full text

    A red listing gap analysis of molluscs and crustaceans in Northern Europe : What has happened in the last 10 years?

    No full text
    At the current rates of species extinction on a global level, Red List assessments need to speed up to inform conservation management in a timely manner. This study analyzed the progress made over the last 10 years in red listing aquatic invertebrates in Northern Europe. A survey of 43 freshwater molluscs and 1492 marine crustaceans was carried out for their Red List status in twelve countries during a twenty year interval (2003−2022). Our survey demonstrated that many countries have no national Red List or outdated Red Lists for the freshwater molluscs and only four countries have assessed their existing crustacean species. Alarmingly, we find 13 % fewer occurrence records for the crustaceans and 48 % fewer records for the freshwater molluscs in GBIF in the last 10 years (2013−2022) than in the 10 years previously (2003−2012). A barcode gap analysis reveals more barcodes for the 16S gene (77 %) than for the COI gene (63 %) for the freshwater molluscs and even fewer barcodes for the marine crustaceans (17 % for 16S and 40 % for the COI gene). With the current methods, regular comprehensive red listing of aquatic invertebrates is unrealistic. Here we present a set of scripts that allow automated occurrence and barcode gap analyses on unrepresented species groups. Finally, we discuss ways to increase the number of occurrence records and speed up red listing under existing European frameworks through whole community screening of ecosystems using molecular and other emerging tools.CC BY 4.0Available online 5 September 2023Corresponding author: E-mail address: [email protected] (S. Leidenberger).This study was financed by the Swedish research council for sustainable development FORMAS End biodiversity loss through improved tracking of threatened invertebrates (grant nr. 2018-01003, 2019-2023). MI was financed by Erasmus+ 2020-2021 HE traineeships (grant nr. 1661, 2020-2021).</p

    Orthologie und Pathophysiologie der Spermatidendifferenzierung und Spermatozoenreifung. Charakterisierung neuer Modulatoren pulsatiler GnRH-Sekretion: Implikationen fuer idiopathische Infertilitaet im Mann Schlussbericht

    No full text
    SIGLEAvailable from TIB Hannover: F00B965+a / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekBundesministerium fuer Bildung und Forschung (BMBF), Bonn (Germany)DEGerman

    Orthologie und Pathophysiologie der Spermatidendifferenzierung und Spermatozoenreifung. Die Rolle von NGF (nerve growth factor) im maennlichen Reproduktionstrakt Schlussbericht

    No full text
    SIGLEAvailable from TIB Hannover: F00B963+a / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekBundesministerium fuer Bildung und Forschung (BMBF), Bonn (Germany)DEGerman
    corecore