4,913 research outputs found

    Neutral Hydrogen 21cm Absorption at Redshift 0.673 towards 1504+377

    Get PDF
    We detect the 21 cm line of neutral hydrogen in absorption at a redshift of 0.673 towards the 1 Jy radio source 1504+377. The 1504+377 radio source is located toward the center of what appears to be an inclined disk galaxy at z = 0.674. The 21 cm absorption line shows multiple velocity components over a velocity range of about 100 km sec1^{-1}, with a total HI column density: N(HI) = 3.8×1019×(Tsf)3.8\times10^{19}\times({{T_s}\over{f}}) cm2^{-2}. The velocity-integrated optical depth of this system is the largest yet seen for redshifted HI 21 cm absorption line systems (Carilli 1995). The 21 cm absorption line is coincident in redshift with a previously detected broad molecular absorption line system (Wiklind and Combes 1996). We do not detect HI 21 cm absorption associated with the narrow molecular absorption line system at z = 0.67150, nor do we detect absorption at these redshifts by the 18 cm lines of OH, nor by the 2 cm transition of H2_2CO. There is no evidence for a bright optical AGN in 1504+377, suggesting significant obscuration through the disk -- a hypothesis supported by the strong absorption observed. The 1504+377 system resembles the ``red quasar'' PKS 1413+135, which has been modeled as a optically obscured AGN with a very young radio jet in the center of a gas rich disk galaxy (Perlman et al. 1996). The presence of very bright radio jets at the centers of these two disk galaxies presents a challenge to unification schemes for extragalactic radio sources and to models for the formation of radio loud AGN.Comment: 17 pages, postscrip

    Feedback-Optimized Operations with Linear Ion Crystals

    Full text link
    We report on transport operations with linear crystals of 40Ca+ ions by applying complex electric time-dependent potentials. For their control we use the information obtained from the ions' fluorescence. We demonstrate that by means of this feedback technique, we can transport a predefined number of ions and also split and unify ion crystals. The feedback control allows for a robust scheme, compensating for experimental errors as it does not rely on a precisely known electrical modeling of the electric potentials in the ion trap beforehand. Our method allows us to generate a self-learning voltage ramp for the required process. With an experimental demonstration of a transport with more than 99.8 % success probability, this technique may facilitate the operation of a future ion based quantum processor

    Implications of a 125 GeV Higgs scalar for LHC SUSY and neutralino dark matter searches

    Full text link
    The ATLAS and CMS collaborations have reported an excess of events in the \gamma\gamma, ZZ^*\to 4\ell and WW^* search channels at an invariant mass m \simeq 125 GeV, which could be the first evidence for the long-awaited Higgs boson. We investigate the consequences of requiring m_h\simeq 125 GeV in both the mSUGRA and NUHM2 SUSY models. In mSUGRA, large values of trilinear soft breaking parameter |A_0| are required, and universal scalar m_0\agt 0.8 TeV is favored so that we expect squark and slepton masses typically in the multi-TeV range. This typically gives rise to an "effective SUSY" type of sparticle mass spectrum. In this case, we expect gluino pair production as the dominant sparticle creation reaction at LHC. For m_0< 5 TeV, the superpotential parameter \mu > 2 TeV and m_A> 0.8 TeV, greatly restricting neutralino annihilation mechanisms. These latter conclusions are softened if m_0\sim 10-20 TeV or if one proceeds to the NUHM2 model. The standard neutralino abundance tends to be far above WMAP-measured values unless the neutralino is higgsino-like. We remark upon possible non-standard (but perhaps more attractive) cosmological scenarios which can bring the predicted dark matter abundance into accord with the measured value, and discuss the implications for direct and indirect detection of neutralino cold dark matter.Comment: 24 pages including 23 .eps figures; updated version 3 contains also b-> tau+nu branching fractio

    The blazar S5 0014+813: a real or apparent monster?

    Get PDF
    A strong hard X-ray luminosity from a blazar flags the presence of a very powerful jet. If the jet power is in turn related to the mass accretion rate, the most luminous hard X-ray blazars should pinpoint the largest accretion rates, and therefore the largest black hole masses. These ideas are confirmed by the Swift satellite observations of the blazar S5 0014+813, at the redshift z=3.366. Swift detected this source with all its three instruments, from the optical to the hard X-rays. Through the construction of its spectral energy distribution we are confident that its optical-UV emission is thermal in origin. Associating it to the emission of a standard optically thick geometrically thin accretion disk, we find a black hole mass of 40 billion solar masses, radiating at 40% the Eddington value. The derived mass is among the largest ever found. Super-Eddington slim disks or thick disks with the presence of a collimating funnel can in principle reduce the black hole mass estimate, but tends to produce spectra bluer than observed.Comment: 5 pages, 2 figures, accepted for publication as a letter in MNRAS after minor revisio

    A Nanofiber-Based Optical Conveyor Belt for Cold Atoms

    Full text link
    We demonstrate optical transport of cold cesium atoms over millimeter-scale distances along an optical nanofiber. The atoms are trapped in a one-dimensional optical lattice formed by a two-color evanescent field surrounding the nanofiber, far red- and blue-detuned with respect to the atomic transition. The blue-detuned field is a propagating nanofiber-guided mode while the red-detuned field is a standing-wave mode which leads to the periodic axial confinement of the atoms. Here, this standing wave is used for transporting the atoms along the nanofiber by mutually detuning the two counter-propagating fields which form the standing wave. The performance and limitations of the nanofiber-based transport are evaluated and possible applications are discussed

    Cm-Wavelength Total Flux and Linear Polarization Properties of Radio-Loud BL Lacertae Objects

    Full text link
    Results from a long-term program to quantify the range of behavior of the cm-wavelength total flux and linear polarization variability properties of a sample of 41 radio-loud BL Lac objects using weekly to tri-monthly observations with the University of Michigan 26-m telescope operating at 14.5, 8.0, and 4.8 GHz are presented; these observations are used to identify class-dependent differences between these BL Lacs and QSOs in the Pearson-Readhead sample. The BL Lacs are found to be more highly variable in total flux density than the QSOs, exhibiting changes that are often nearly-simultaneous and of comparable amplitude at 14.5 and 4.8 GHz in contrast to the behavior in the QSOs and supporting the existence of class-dependent differences in opacity within the parsec-scale jet flows. Structure function analyses of the flux observations quantify that a characteristic timescale is identifiable in only 1/3 of the BL Lacs. The time-averaged fractional linear polarizations are only on the order of a few percent and are consistent with the presence of tangled magnetic fields within the emitting regions. In many sources a preferred long-term orientation of the EVPA is present; when compared with the VLBI structural axis, no preferred position angle difference is identified. The polarized flux typically exhibits variability with timescales of months to a few years and shows the signature of a propagating shock during several resolved outbursts. The observations indicate that the source emission is predominately due to evolving source components and support the occurrence of more frequent shock formation in BL Lac parsec-scale flows than in QSO jets. The differences in variability behavior and polarization between BL Lacs and QSOs can be explained by differences in jet stability.Comment: 1 LaTex (aastex) file, 21 postscript figure files, 2 external LaTex table files. To appear in the Astrophysical Journa

    Exclusive measurement of coherent eta photoproduction from the deuteron

    Get PDF
    Coherent photoproduction of eta mesons from the deuteron has been measured from threshold up to incident photon energies of 750 MeV using the photon spectrometer TAPS at the tagged photon facility at the Mainz microtron MAMI. For the first time, differential coherent cross sections have been deduced from the coincident detection of the eta meson and the recoil deuteron. A missing energy analysis was used for the suppression of background events so that a very clean identification of coherent eta-photoproduction was achieved. The resulting cross sections agree with previous experimental results except for angles around 90 deg in the photon-deuteron cm-system where they are smaller. They are compared to various model calculations.Comment: 4 pages, 4 figure

    Magnetic Fields in Quasar Cores II

    Full text link
    Multi-frequency polarimetry with the Very Long Baseline Array (VLBA) telescope has revealed absolute Faraday Rotation Measures (RMs) in excess of 1000 rad/m/m in the central regions of 7 out of 8 strong quasars studied (e.g., 3C 273, 3C 279, 3C 395). Beyond a projected distance of ~20 pc, however, the jets are found to have |RM| < 100 rad/m/m. Such sharp RM gradients cannot be produced by cluster or galactic-scale magnetic fields, but rather must be the result of magnetic fields organized over the central 1-100 pc. The RMs of the sources studied to date and the polarization properties of BL Lacs, quasars and galaxies are shown to be consistent so far with the predictions of unified schemes. The direct detection of high RMs in these quasar cores can explain the low fractional core polarizations usually observed in quasars at centimeter wavelengths as the result of irregularities in the Faraday screen on scales smaller than the telescope beam. Variability in the RM of the core is reported for 3C 279 between observations taken 1.5 years apart, indicating that the Faraday screen changes on that timescale, or that the projected superluminal motion of the inner jet components samples a new location in the screen with time. Either way, these changes in the Faraday screen may explain the dramatic variability in core polarization properties displayed by quasars.Comment: Accepted to the ApJ. 27 pages, 9 figures including figure 6 in colo

    Range expansion with mutation and selection: dynamical phase transition in a two-species Eden model

    Get PDF
    The colonization of unoccupied territory by invading species, known as range expansion, is a spatially heterogeneous non-equilibrium growth process. We introduce a two-species Eden growth model to analyze the interplay between uni-directional (irreversible) mutations and selection at the expanding front. While the evolutionary dynamics leads to coalescence of both wild-type and mutant clusters, the non-homogeneous advance of the colony results in a rough front. We show that roughening and domain dynamics are strongly coupled, resulting in qualitatively altered bulk and front properties. For beneficial mutations the front is quickly taken over by mutants and growth proceeds Eden-like. In contrast, if mutants grow slower than wild-types, there is an antagonism between selection pressure against mutants and growth by the merging of mutant domains with an ensuing absorbing state phase transition to an all-mutant front. We find that surface roughening has a marked effect on the critical properties of the absorbing state phase transition. While reference models, which keep the expanding front flat, exhibit directed percolation critical behavior, the exponents of the two-species Eden model strongly deviate from it. In turn, the mutation-selection process induces an increased surface roughness with exponents distinct from that of the classical Eden model
    corecore