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Abstract. The colonization of unoccupied territory by invading species, known
as range expansion, is a spatially heterogeneous non-equilibrium growth process.
We introduce a two-species Eden growth model to analyze the interplay between
uni-directional (irreversible) mutations and selection at the expanding front.
While the evolutionary dynamics leads to coalescence of both wild-type and
mutant clusters, the non-homogeneous advance of the colony results in a
rough front. We show that roughening and domain dynamics are strongly
coupled, resulting in qualitatively altered bulk and front properties. For beneficial
mutations the front is quickly taken over by mutants and growth proceeds Eden-
like. In contrast, if mutants grow slower than wild-types, there is an antagonism
between selection pressure against mutants and growth by the merging of mutant
domains with an ensuing absorbing state phase transition to an all-mutant front.
We find that surface roughening has a marked effect on the critical properties
of the absorbing state phase transition. While reference models, which keep the
expanding front flat, exhibit directed percolation critical behavior, the exponents
of the two-species Eden model strongly deviate from it. In turn, the mutation-
selection process induces an increased surface roughness with exponents distinct
from that of the classical Eden model.
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1. Introduction

The spatial structure strongly influences the dynamics of evolving biological systems and often
gives rise to qualitatively different outcomes as compared to well-mixed populations [1, 2].
Over the last few years, microbiological experiments have progressively been used to shed
light on the dynamics of spatially extended systems [3–9], and have spurred theoretical
investigations [10–16]. Since microbial colonies typically grow from some initial seed, a
particularly interesting question to ask is: how are both a colony’s morphology and its internal
composition shaped by the growth rates of the different strains it is composed of and by
the interactions between these strains. Already the simplest scenario, the spreading of two
selectively neutral strains or species shows intriguing phenomena, which makes the evolutionary
outcome quite distinct from well-mixed populations [17–22]. Experimental investigations of
expanding Escherichia coli and Saccharomyces cerevisiae colonies containing two fluorescently
labeled but selectively neutral strains have shown that the population differentiates along the
growing front and thereby segregates into well-defined domains [18, 22]. This is caused by
demographic fluctuations: since mainly cells at the leading front of the growing colony access
nutrients and reproduce, the effective population size is small and neutral dynamics leads to
local fixation of strains and thereby generates sectoring of the population [22].

In general, however, microbial communities are heterogeneous and composed of multiple
strains, which may have different growth rates or show other kinds of distinct phenotypic
features; cf e.g. [16, 23–28]. One well-known phenomenon, which is the focus of this paper,
is bursts of new sectors of mutants during the growth of bacterial colonies [3, 22, 29–31].
In a growing bacterial colony, which initially consists of one phenotype (the wild-type) only,
mutations of this strain may appear during the reproduction of individuals. If these mutations
happen at the leading front and are beneficial, i.e. if the mutant strain has a larger growth
rate than the wild-type strain, mutant regions along the front not only advance faster but
also expand laterally. Consequently, mutant sectors take over ever larger parts of the front
in a quasi-deterministic fashion [22, 32, 33]. While deleterious mutations are, for the same
reason, handicapped by selection, they may still form large clusters along the front if they
appear frequently enough. In this case mutant sectors are no longer spatially separated, but may
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coalesce. At a critical mutation probability, the mutants’ selective disadvantage is effectively
balanced and mutants may take over the front [22]. If back-mutations are prohibited, the front
remains trapped in an all-mutant state. In the language of non-equilibrium statistical mechanics,
the critical mutation rate marks a phase transition between an active state, for which the front
is composed of wild-types and mutants, and an absorbing homogeneous state, composed of
mutants only [34–37].

What makes this absorbing state phase transition in a growing bacterial colony interesting
is the intricate interplay between the morphology of the growing front and the evolutionary
dynamics of the colony. Depending, among others, on the particular type of bacterial strain,
nutrient concentration and softness of the agar surface, bacterial colonies exhibit a kaleidoscope
of possible morphologies [3, 4, 6, 30, 38–40]. The Eden model [41] has been devised to describe
the growth of bacterial cultures with a compact morphology on which we focus in this work.
A hallmark of this model is the generation of rough fronts with characteristic features closely
resembling recent experimental observations [42]. The roughness of the front directly affects the
trajectory of interfaces between domains of different strains [32]: the undulations of the front are
imprinted in the meandering of the domain boundaries on all length scales, as has recently also
been observed experimentally [18, 22]. This surface-induced meandering speeds up coalescence
of clusters, i.e. the roughness of the propagating front strongly affects the temporal evolution
of the population’s composition. This suggests that front roughening is highly relevant for
the nature of the phase transition from a heterogeneous to a homogeneous population at the
expanding front.

It is precisely this issue that we would like to address in this paper. To this end we
study bacterial range expansion using a two-species Eden model, which incorporates surface
roughness, selection and irreversible mutations. We intend to gain deeper insight into the
interplay of these key features of the dynamics and their relative importance for the transition
to the absorbing state. While our findings are mainly of general importance for a broader
class of multi-species growth models, we also expect that real-world range expansions of
bacterial colonies are subject to this coupling and carry its signature in the evolving patterns. In
the remainder of the introduction, we give a concise overview of previous work on surface
roughness and absorbing state phase transitions as relevant for this work. A more in-depth
discussion and comparison with the results of our work is given in the final section.

Both, discrete numbers and roughness of the expanding front are intrinsic to surface
growth models [43–45], which mimic the stochastic advance of particles into empty space.
One particular growth model, the Eden model [41] (of which there are three, slightly different,
variants [46]) has been devised to describe the growth of bacterial cultures. Mesoscopically
its evolution is captured by the Kardar–Parisi–Zhang (KPZ) equation [47]. The KPZ equation
constitutes a robust universality class which incorporates many surface growth models, like
e.g. ballistic deposition and solid-on-solid models. There have been a number of generalizations
to multi-species growth models [32, 48–60], notably one of the Eden model that incorporates
selection [32]. The coupled influence of mutations and selection on kinetic surface roughening,
which is one of the topics of this work, has not been analyzed in detail so far. Even
when neglecting roughness, multi-species propagation is not treated easily in more than one
dimension. The reason for this is the intricate interplay of creation, annihilation and merging of
clusters, which contain only one kind of individual, at the leading front of the colony.

In the case of irreversible mutations, both analytical results and numerical simulations
for range expansion with flat fronts (neglecting surface roughness) predict a transition to an
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all-mutant absorbing state, which emerges even for deleterious mutations at a critical mutation
probability [22]. For such models with flat fronts [22], the dynamics closely resembles that of
a contact process [61]. As a consequence, it belongs to a broader class of absorbing state phase
transitions whose main representative is directed percolation (DP) [62], a dynamic version of
percolation [63]. The DP universality class of phase transitions to absorbing states has been
found to display enormous robustness with respect to alterations of the microscopic update rules
and is considered a paradigm of non-equilibrium statistical physics [34–37]. How roughness of
the front may influence phase transitions to absorbing states has, to the best of our knowledge,
not been addressed previously.

This paper is organized as follows. In section 2, we introduce a two-species growth process
on a 2d lattice to analyze the general properties of range expansion of asexually reproducing
microorganisms. It explicitly includes irreversible mutations from wild-types to mutants and
selection between the two strains. The evolving system’s morphology intimately depends on
the antagonistic effects of new mutant domains being created at the front and others losing
contact with it. For abundant, deleterious mutations a phase transition to an absorbing state
exists, which changes both the evolutionary dynamics and the surface roughening behavior of
the system qualitatively. We discuss the properties of both surface and bulk morphology and
map out the phase diagram in section 3. The system’s critical behavior near the transition is
affected by the front’s roughness, since the temporal evolution of the system is restricted to
the growing front. This alters the critical properties of the absorbing state phase transition.
In section 4.1 we determine its critical exponents, which are different from those of the DP
class (which is most often found for flat systems [34–37]). In addition, the different birth rates
of the two strains induce an enhanced width of the front near the phase transition. Close to
the transition the roughness exponent of our model is severely enhanced compared to that of
the Eden model [43–45]. In addition to KPZ behavior we identify and characterize a critical
roughening regime in section 4.2. We conclude with a discussion of our results and a comparison
to related models which study the coupling between surface roughening and domain dynamics.

2. The Eden model with mutations

Range expansion into hitherto unoccupied territory proceeds in a non-homogeneous manner on
the length scale of individuals. Along the leading front local protrusions emerge randomly and
subsequently expand, thereby creating a rough front and an overall forward movement. The
main features of this growth process are well captured by the classical Eden model, which was
developed to mimic the growth of microbial colonies [41, 44, 45]. While some multi-species
extensions of the Eden model have been analyzed [32, 48–50], surface growth experiments with
competing microorganisms have been performed only recently [18, 22]. They reveal intriguing,
nontrivial patterns if the population is comprised of distinguishable sub-populations. Mutations
and selection can alter the growth dynamics by giving some individuals a growth advantage or
by introducing qualitatively different organisms.

In this work, we employ a lattice gas model to analyze the influence of mutations and
selection on range expansion at rough, fluctuating fronts. We model microbial range expansion
with mutations as a cellular automaton on a 2d semi-infinite square lattice of extensions L × ∞

with periodic boundary conditions in the transverse direction (see figure 1).
At a given time t , each site (i, j), with i ∈ {1, . . . , L} and j ∈ N, is either empty or occupied

with an individual, which in turn can be either a wild-type or a mutant. We identify empty
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Figure 1. The Eden model with mutations. An initially line-shaped bacterial
colony of length L , consisting of only wild-types, shown in dark gray (red),
grows into an empty half-space. Wild-types reproduce at rate 1, given that they
have a vacant nearest-neighboring lattice site. Individual offsprings are either
wild-types or mutants (light gray) with probabilities 1 − p and p, respectively.
Mutants reproduce like wild-types but at birth rate b. Back-mutations are
prohibited. In the L-direction (transverse) periodic boundary conditions apply.

sites, wild-types and mutants with state variables s = 0, s = 1 and s = −1, respectively. The
state of the system at a given time is, therefore, specified by the set of occupation numbers
si, j ∈ {−1, 0, 1}. The system evolves as individuals reproduce: empty sites with s = 0 can
change their state if an individual on a nearest-neighboring site reproduces. We assume that
individuals do not die and hence any site with s = ±1 remains in its state indefinitely.

To implement random-sequential update of a configuration, we apply a simplified version
of Gillespie’s stochastic algorithm [64]. Only individuals at the front, defined as the set of
occupied sites with at least one empty nearest-neighbor site, can reproduce. Of these, an
individual is randomly, but proportional to its birth rate, chosen to reproduce: mutants reproduce
with relative birth rate b > 0, while the birth rate of wild-types is 1 and thereby sets the
timescale. Let Nwt and Nmut denote the number of wild-types and mutants with free neighbors,
respectively. The overall birth rate of the population (at which production events happen) is
given by btot := (Nwt + bNmut). To account for different birth rates, each wild-type individual
with an empty neighbor is chosen to reproduce with probability 1/btot, while each mutant
individual with an empty neighbor is chosen with probability b/btot. The new individual is
placed on a random empty nearest-neighbor site of the individual which has been chosen to
reproduce. During wild-type reproduction, a mutation may happen with probability p. Thus,
if the reproducing individual is wild-type (s = 1), the offspring is a wild-type with probability
1 − p and a mutant with probability p. If the reproducing individual is a mutant (s = −1), the
offspring is necessarily also a mutant. Note that by these rules back-mutations and multiple
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mutations are prohibited and that all mutants are identical and reproduce with the same birth
rate b. Assuming exponentially distributed reproduction times, the expectation time until the
next reproduction event is b−1

tot . Hence, we update time by t → t + b−1
tot whenever an individual

reproduces. Since, after some initial transient period, the average front position moves at
constant velocity, one may take the longitudinal coordinate j as a proxy for time t .

The model, as described above, is a generalization of version C of the Eden model as
introduced by Jullien and Botet [46]. It is the biologically most realistic version, as it focuses on
occupied sites, i.e. individuals, rather than on empty sites (version A) or bonds between adjacent
occupied and empty sites (version B). In the limit of vanishing mutation rate our model reduces
to the model of Saito and Müller-Krumbhaar [32]. While we consider the case of a homogeneous
initial front with uni-directional mutations, they analyzed the temporal evolution of an initially
heterogeneous front in the absence of mutations; see section 5 for more details. If not stated
otherwise, we use a line of wild-type particles as the initial condition, i.e. si, j = δ j,1. Since
diffusion is not included in the model, surface configurations become frozen in the bulk, as
observed for patterns in range expansion experiments [18].

3. Phenomenology and phase diagram

3.1. Phenomenology

We now turn to a phenomenological description of the morphology of the evolving colony, as
obtained from stochastic simulations; a representative realization of the range expansion process
is shown in figure 2(a). Starting from an initial line of wild-types the growth front moves forward
and, as a result of the stochastic individual birth processes, some parts of the front expand more
rapidly than others. This leads to front roughening which first appears on length scales of the
lattice constant, but as time progresses, the typical size of protrusions and indentations of the
front grows both longitudinally and laterally.

As the range expansion proceeds, mutation events occur where a wild-type individual
gives birth to a mutant, whose direct descendants create a new mutant sector growing between
two wild-type domains. Mutant and wild-type domains are separated by domain boundaries.
Since the reproduction rates of mutant and wild-type individuals differ in general, the boundary
between their respective growth sectors performs a biased random motion. While for beneficial
mutations, with b > 1, sectors consisting of mutants broaden on average, they have a tendency
to decrease in size for deleterious mutations where b < 1. Fluctuations in the trajectory of the
boundary arise mainly for two reasons: on short length scales, they are due to the intrinsic
stochasticity of the birth events. On larger scales, roughening of the front drives a super-diffusive
meandering of the sector boundaries [18, 32, 48]: as the population locally always expands
normal to the front, the roughness of the front is imposed on the trajectories of the sector
boundaries.

While the domain boundaries move transversely through the system, they may encounter
other boundaries, resulting in mutual annihilation and an ensuing merging of domains. There are
two distinct types of coalescence events of domain boundaries; cf figure 2(a): either boundaries
of different mutant clusters meet such that they merge and form a larger mutant cluster, or
two boundaries of the same cluster meet, in which case a mutant cluster loses contact with
the growing front and is trapped by wild-types. Note that boundaries are always created and
annihilated pairwise, and regions of wild-types and mutants alternate at the front.
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Figure 2. Phenomenology of the model. (a) Morphology. Wild-types are shown
in dark gray (red); mutants in light gray. During range expansion mutants are
created (examples indicated by crosses, ×), which in turn reproduce and thereby
create mutant clusters. The lateral boundaries (an example is given by the
dashed black line) of mutant clusters are created pairwise and perform biased,
super-diffusive random walks. Mutant clusters are either outgrown by the wild-
types (examples indicated by circles, ◦) or merge with other clusters (examples
marked with diamonds, ♦), forming even bigger mutant clusters. In both cases
a pair of boundaries annihilates. In the bulk, the presence of mutant clusters is
discernible as a density of wild-type sites ρ( j) < 1 at longitudinal position j .
Mutant clusters in the bulk are characterized by their typical longitudinal and
transverse extensions, which are identified with the correlation lengths ξ‖ and
ξ⊥, respectively. The surface roughness of the population front is characterized
by the width w, defined as the standard deviation of the front position. For
this realization on a lattice of length L = 128, we used birth rate b = 0.9 and
mutation probability p = 0.016. (b) Averaged observables. By averaging over
many independent realizations of the growth process, fluctuation effects are
suppressed and mean observables can be defined. Shown here is the mean density
〈ρ( j)〉 as a function of longitudinal position j , averaged over 500 realizations for
the parameters used in (a). For large j , the density of wild-type sites settles to
a stationary value ρs, as the creation and annihilation of mutant clusters (and
boundaries) at the front equilibrate.

The relative frequency of events creating and annihilating sector boundaries determines
the ultimate fate of the expanding front. In wild-type dominated regions of the front, mutation
events enhance phenotypic heterogeneity and create new boundaries. At the same time,
merging of mutant clusters creates homogeneous mutant regions. If the selective advantage of
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wild-types is too small to trap mutant clusters, coalescence events promote the growth of mutant
clusters, leading to more uniform front populations. Since we do not allow for back-mutations,
the expanding front may end up in an absorbing state where it is completely taken over by
mutants. For a finite system, this will eventually always happen even for deleterious mutations.
The main question to ask then is: how does the corresponding fixation time scale with the system
size L?

Inspecting figure 2 one can discern several morphological features of the expanding
population, which we discuss phenomenologically now and analyze quantitatively in the
following sections. We discriminate properties of the front and of the bulk of the population.
An important bulk observable is the density of wild-type sites,

ρ( j) :=
1

L

∑
i

δsi, j ,1, (1)

at longitudinal position j . As indicated in figure 2(b), the ensemble averaged density decays,
for L → ∞, towards some stationary value ρs, which serves as an order parameter. A value of
ρs = 0 corresponds to the absorbing state where all individuals at the front are mutants. Any
finite value indicates phenotypic heterogeneity with both mutants and wild-types present at the
front of the expanding population. Mutant clusters are, in general, anisotropic and one has to
distinguish between their extension parallel and perpendicular to the preferred direction of the
range expansion: the corresponding longitudinal and transverse correlation lengths are denoted
by ξ‖ and ξ⊥, respectively. The front of the population is characterized by its average speed and
its roughness. A good measure for the latter is the width w, defined as the standard deviation of
the front’s position,

w(L , t) :=

(
1

L

L∑
i=1

[
h(i, t) − h̄(t)

]2

)1/2

, (2a)

from its average value,

h̄(t) :=
1

L

L∑
i=1

h(i, t). (2b)

Here h(i, t) is the local position of the front, defined as the largest j for which si, j 6= 0.

3.2. Phase behavior: active and inactive phases

The morphology of the expanding population, as discussed above, depends on the values of the
mutation probability p and the relative reproduction rate b of the mutant individuals; cf figure 3.
One can clearly identify two distinct phases: in what we call the active phase the population
front is composed of both wild-types and mutants in a heterogeneous mixture. Here mutants
are continuously created by mutation events and the ensuing mutant sectors are subsequently
lost again by a coalescence process where sector boundaries meet and the domain of mutants
loses contact with the front. This typically happens in a parameter regime where mutations are
deleterious and rare. In contrast, if mutations become more frequent and/or their reproduction
rate becomes larger, mutant clusters have a significant probability to merge and/or to sweep
through the system and thereby completely take over the population front. This is termed the
inactive phase since the absorbing state, with only mutants at the front, cannot be left anymore.
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Figure 3. Parameter study of the Eden model with mutations. Typical realizations
of the model in a finite system (L = 128) are shown for time t = 100 and
various combinations of mutation rates p and relative birth rates b. Wild-types
are shown in dark gray (red), mutants in light gray, and empty sites in black.
For beneficial mutations (cf panels (D), (H) and (L)) mutant clusters expand
quasi-deterministically. Together with panels (B), (C) and (G) these are examples
for the inactive phase. Here the wild-type is lost in the bulk and the absorbing
state, with only mutants at the front, is reached very fast, as mutants merge into
extended clusters. As opposed to this, the active phase (cf panels (E), (I) and (J))
is characterized by long lasting heterogeneous fronts with both mutants and wild-
types present. Here, the average spatial distance between distinct mutation events
is larger than the extension of the created mutant clusters, which repeatedly
lose contact to the front. A non-equilibrium phase transition separates the two
phases, where low relative birth rates b and high mutation probabilities p balance
and rich self-affine patterns evolve (cf panels (A), (F) and (K)). Going from
panel (J) to panel (B) at constant birth rate b = 0.5, the system changes from
a heterogeneous front of wild-types and mutants to a homogeneous all-mutant
front. The transition is characterized by diverging length scales (mutant clusters),
vanishing wild-type density and enhanced width of the population front, as
discussed in the main text.

For all beneficial mutations, where b > 1, we are well in the inactive phase, independent
of the probability p at which mutations appear. Here, a sector created from a single mutation
has a finite opening angle and hence grows laterally on average, as observed in experiments
[3, 22]. Therefore, already a single mutant can sweep through the population and take over
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the population front, as the boundaries of the respective growth sector have, on average, a
transverse velocity directed outwards [22, 32, 33]. This fixation process is further accelerated
by the merging of neighboring mutant sectors; cf figure 3, panel (L).

For deleterious mutations, where b < 1, there is an antagonism between merging of
different mutant clusters, creating large mutant domains, and closing of individual mutant
clusters, leading to an enlarged fraction of wild-types at the front. Since mutations go from
wild-type to mutant only, phenotypic heterogeneity is maintained as long as there are some
wild-type individuals left at the front.

An isolated sector of mutants can survive only for a finite time interval due to stochastic
effects. These enable mutants to ‘surf’ population waves in expanding populations [19, 65–67]:
if mutations appear at the front of an expanding population they have a twofold advantage
compared to mutations in spatially homogeneous settings. Firstly, the front can be seen as a
perpetual population bottleneck, where demographic fluctuations are enhanced, which in turn
reduces the effect of selection. Secondly, the offspring of mutations at the front can spread into
unoccupied territory, where there is less competition. By this ‘founder effect’ mutants form
clusters at the front that can reach much higher frequencies and evade extinction much longer
than would be expected in spatially homogeneous settings. However, in the long run an isolated
sector tends to lose contact with the front as it is outgrown by the wild-type as a result of the
lower birth rate of mutant individuals; cf panels (E), (I) and (J) of figure 3. The phenomenology
changes qualitatively when mutation events become more frequent. Then, nearby mutant sectors
can merge and thereby counteract the loss of mutant sectors by the coalescence of sector
boundaries [22]; cf panels (B), (C) and (G) of figure 3. The founder effect promotes the growth
of individual mutations, but persistence of mutants is guaranteed by the merging of domains.
As a consequence of this antagonism, one expects a phase boundary pc(b) between the passive
and the active phase. Hallatschek and Nelson [22] considered mutations appearing at a flat front
and found that for deleterious mutations there exists a critical mutation rate where mutants take
over. We here consolidate this interesting finding and incorporate the roughness of the front. We
analyze in detail the properties of the transition from a heterogeneous to an all mutant front in
section 4.

3.3. Phase diagram

Since our model explicitly excludes back-mutations, the absorbing state, for which the wild-type
strain has lost contact with the population front and only mutant individuals are present, cannot
be left. For finite systems, L < ∞, this absorbing state is eventually always reached, as even
for deleterious mutations mutant clusters of arbitrary size can appear through rare fluctuations.
As noted above, the key quantity to analyze is the average time for this to happen as a function
of mutation probability p, relative birth rate b and system size L . This mean fixation time
tf(p, b, L) is defined as the mean time t when the number of wild-type individuals with empty
neighbors, Nwt, becomes zero for the first time.

The mean fixation time generally diverges with growing system size, L → ∞. The results
from our stochastic simulations, shown in figure 4, allow us to distinguish three generic cases:
(i) for large mutation probability p or beneficial mutations b > 1, we find that tf ∼ ln L . This is
the same result as for well-mixed populations [68, 69]. We take this asymptotic law as a hallmark
for the inactive phase. Note that for isolated beneficial mutations (neglecting the merging of
mutant clusters), one finds that the extinction time scales linearly in the system size [22]. Hence,
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Figure 4. Fixation times tf as a function of the system size L . (a) The fixation
time tf is the mean time until the absorbing state, where only mutants are at
the expanding front, is reached. Asymptotically the fixation time grows with
the system size L . Three cases, as discussed in the text and figure 3, can be
distinguished: fast fixation, tf ∼ ln L , exponentially slow fixation, tf ∼ exp cL ,
and the marginal case tf ∼ L z, where z = 1.05 ± 0.05 (black dash line). Shown
here are fixation times for b = 0.5, but for different birth rates the discrimination
of three distinct regimes holds. For comparability, fixation times have been
normalized by t∗ := tf(L = 8). (b) The same data as in (a), but rescaled with
system size L and distance to the phase transition 1, according to finite size
scaling as detailed in section 4.1. All data collapse onto a master curve as can
be inferred from the semi-logarithmic plot. The inset is a double logarithmic
plot of the same data, which depicts the characteristic scaling above and below
criticality, tf = L zτ±(L/1−ν⊥). As a guide to the eye, we have included best
fits (black lines) to these functions given by τ +(x) = 3.8 exp(10.5x)/(1 + x) and
τ−(x) = 0.26 ln(1 + 10.5x)/x .

the logarithmic law arises from the merging events. (ii) In the active phase we have tf ∼ exp(cL),
with some constant c. (iii) The phase boundary pc(b) between the active and the inactive phase
is characterized by power law behavior of the mean extinction time: tf ∼ L z with a dynamical
exponent z. This signature is well known from previous studies of phase transitions to absorbing
states [36, 37] (see section 4). From our numerical data we estimate z = 1.05 ± 0.05.

Since the phase transition from the active phase to the inactive phase is accompanied
by a qualitative change in the L dependence of the mean fixation time tf from logarithmic to
exponential behavior, we may use it to map out the phase diagram; see figure 5.

We find a phase transition line pc(b), which ends at the points (b, p) = (0, p∗) and
(b, p) = (1, 0). For b = 0 mutants do not reproduce at all and each mutant is created by a
reproducing wild-type individual in an independent event with probability p. For low p the
clusters have a typical size of one site and are obstacles around which the wild-types grow.
For larger p more extended clusters are formed by mutation events that happen on neighboring
sites. For the wild-types this corresponds to an Eden process on a site percolation network,
where wild-type individuals are identified with occupied sites (present with probability 1 − p)
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Figure 5. Phase diagram of the Eden process with mutations. The transition from
the inactive phase (fast fixation, light gray) to the active phase (exponentially
slow fixation, dark gray (red)) is a non-equilibrium phase transition (solid black
line). Simulations can be categorized by the slope in a double-logarithmic tF

versus L plot for L � 1: plus signs (+ , blue) denote inactive phase behavior with
slope <1; crosses (×, black) denote active phase behavior with slope >1. Along
the gray dotted line b = 1 mutations are neutral. The point (p = 0, b = 1) (black
open circle) is not part of the transition line, as for p = 0 no mutants can appear
and we recover the original Eden model. The phase transition line terminates on
the axis b = 0, at critical mutation probability p∗ (full black circle). This point
corresponds to the critical density of isotropic site percolation; see the main text.
The mean field transition line (black dashed line), given by equation (4), is in
excellent agreement with our numerical results. To characterize the properties of
the phase transition we explore how physical observables depend on the distance
to the phase transition 1 := pc − p. To this end, simulations were carried out for
b = 0.5 (without loss of generality), indicated by a black dotted box, for which
we found pc = 0.159 ± 0.001.

and mutant individuals with empty sites (present with probability p). Thus (b, p) = (0, p∗) is a
multi-critical point of the transition line, below which the wild-type strain, for L → ∞, keeps
growing on the infinite percolating cluster. This implies that p∗

= 1 − pisp
c ≈ 0.407, where pisp

c
is the percolation threshold of isotropic site percolation on a 2d square lattice [63].

For non-vanishing birth rates, b > 0, a newly formed mutant cluster can grow to some
significant size. As a result clusters originating from more distant mutation events can merge
before losing contact with the front. The phase transition line marks the set of mutation rates
pc(b), where, for a given birth rate of mutants b, the typical spatial distance between two
mutation events becomes comparable to the typical extension of individual mutant clusters.
Thus, as we move to larger and larger birth rates, the critical mutation probability pc declines.

For b → 1, mutations become neutral, that is, the selection pressure vanishes and the
random motion of sector boundaries is not biased anymore. Individual clusters can grow
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unlimited by fluctuations, and consequently the smallest number of mutations suffices for the
population to be in the inactive phase. If p = 0 no mutants are created and we recover the
classical one-species Eden model composed of growing wild-types [41]. Thus, at (b, p) = (1, 0)

the front is composed of only wild-type individuals and the absorbing state is never reached. Our
numerical data suggest that pc approaches this point in a cusp-like singularity.

For b > 1 mutations are beneficial, which means mutations and selection are not
antagonists anymore, and hence a phase transition is absent. Here, the mutants take over the
system quasi-deterministically for all finite values of p.

To rationalize our findings for the phase diagram we consider a phenomenological mean
field theory for the dynamics of the density of the wild-type strain at the front of the expanding
population, n = Nwt/(Nwt + Nmut). On average, wild-type individuals are lost by mutation at a
rate p, and gained or lost through natural selection depending on the relative growth rates of
the wild-type and mutant individuals. The effect of natural selection is proportional to n(1 − n),
which vanishes if the front is composed of one strain only. This leads to the following rate
equation:

ṅ = −pn + s(b)n(1 − n), (3)

where s(b) is an effective selection strength. The functional form of s(b) can be determined
phenomenologically: the rate equation (3) has the fixed points n1 = 0 and n2 = 1 − p/s(b).
In the active phase, n1 = 0 is unstable, while n2 is stable. At the phase transition the two
fixed points merge and interchange their stability in a transcritical bifurcation. Solving n1 = n2

gives the mean field transition line pmf
c (b) = s(b). For b → 0 the problem reduces to isotropic

percolation and hence s(0) = p∗. Certainly the selection coefficient s(b) has to vanish if mutants
reproduce as fast as wild-types, s(1) = 0, which gives us the other end of the transition line.
Close to it the transition line can be approximated by a power law, pmf

c (b → 1) ∼ (1 − b)µ,
reflecting the cusp singularity we found in the simulations. The simplest ansatz for the mean
field transition line, which fulfills these constraints, is

pmf
c (b) = s(b) = p∗(1 − b)µ. (4)

A fit to our numerical derived phase transition line gives µ = 1.41 ± 0.03. The
phenomenological mean-field transition line, depicted in figure 5, is in very good agreement
with our numerical results.

4. Critical behavior

In this section, we investigate in depth the properties of the absorbing state phase transition
from the active into the inactive phase. Without loss of generality we focus on a fixed value for
the birth rate of mutants, b = 0.5, for which we found the critical mutation probability to be
pc(b = 0.5) = 0.159 ± 0.001. The qualitative behavior of all observables stays the same along
the transition line. Close to the special points b = 0 and b = 1 crossover effects become more
pronounced, which we do not examine here.

4.1. Bulk properties

We first address bulk properties of the system, i.e. observables measured sufficiently far away
from the rough growth front. Since we are dealing with a phase transition to an absorbing state,
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we expect to find four independent critical exponents [34–37]. A common choice of observables
is: the stationary density ρs := ρ( j → ∞) of active sites (wild-types); the survival probability
Ps (survival, in this context, means the wild-type having contact with the growth front) of a
single active site (wild-type) in a front of inactive sites (mutants); the longitudinal correlation
length ξ‖, and the transverse correlation length ξ⊥. For L → ∞, all these observables diverge
like power laws in the control parameter 1 := pc − p in the vicinity of the phase transition. The
respective critical exponents are defined through

ρs ∼ 1β for 1> 0, (5a)

Ps ∼ 1β ′

for 1> 0, (5b)

ξ‖ ∼ |1|
−ν‖ , (5c)

ξ⊥ ∼ |1|
−ν⊥ . (5d)

The above observables are understood as ensemble averages. The stationary density ρs and the
survival probability Ps are 0 in the inactive phase, 1 < 0, since in this case any heterogeneous
composition of the front is unstable.

For finite systems, L < ∞, both the stationary density ρs and the survival probability Ps

are identical to 0 for the inactive and the active phase. Although it may be extremely rare, it is
always possible—even in the active phase—that large enough mutant clusters appear and finally
lead to a front consisting of mutants only, which is the absorbing state. Hence, ρs and Ps are not
particularly useful observables for L < ∞, and one instead has to examine the time-dependent
density ρ(1, t, L) and survival probability P(1, t, L), and also time-dependent correlation
lengths ξ‖(1, t, L) and ξ⊥(1, t, L).

We measured the critical exponents, defined in equations (5a)–(5d), using different
methods. Starting with a line of wild-types in the active phase we let the system evolve,
disregarding realizations where the absorbing state was reached. This allows us to use stationary
observables, instead of more involved dynamical ones. From each realization we extracted for
each mutant cluster (i) the longitudinal extension `‖, (ii) the transverse extension `⊥ and (iii) the
number of cluster sites or mass m. In analogy to percolation theory [63], the correlation lengths
are then calculated by

ξ 2
# (1, L) =

2
∑

k mk`
2
#,k∑

k mk
, # ∈ {‖, ⊥}, (6)

where k runs over all observed clusters. The computed correlation lengths depend on both the
distance to the phase transition 1 and the system size L . However, close to the critical point all
macroscopic observables are invariant under scaling transformations of the form [34–37]

1 → c1, (7a)

x‖ → c−ν‖ x‖, (7b)

x⊥ → c−ν⊥ x⊥, (7c)

ρ → cβρ, (7d)

P → cβ ′

P. (7e)
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Figure 6. Rescaled correlation lengths from simulations started with a
line of wild-types as the initial condition for different lattice sizes.
(a) Rescaled correlation lengths from cluster-size distributions in the active
phase. Longitudinal correlation length ξ‖ (upper plot) and transverse correlation
length ξ⊥ (lower plot) have been computed from mutant cluster masses m and
cluster extensions `‖ and `⊥ (see text). Correlation lengths depend on both
L and distance to the phase transition 1. Taking ν⊥ = ν‖ = 1.6 ± 0.1 all data
collapse to master curves under rescaling. (b) Rescaled longitudinal correlation
length as found from decay of wild-type density in the inactive phase. The wild-
type density ρ decays exponentially, with a decay length proportional to the
longitudinal correlation length. Again all data collapse to a master curve for
ν⊥ = ν‖ = 1.6 ± 0.1.

where c is some positive rescaling factor. This implies for the correlation lengths the following
scaling forms:

ξ#(1, L) = Lν#/ν⊥ f#(1L1/ν⊥), (8)

where the f#(x) are universal scaling functions with the asymptotic behavior

f#(x) ∼

{
1, x � 1,

x−ν#, x � 1.
(9)

Indeed, after rescaling, our simulation data for both correlation lengths ξ#(1, L) collapse onto
master curves for all L and 1, if we take

ν⊥ = ν‖ = 1.6±0.1, (10)

see figure 6(a). Note that this means that close to the transition the longitudinal and transverse
correlation lengths show the same scaling behavior, ξ⊥ ∼ ξ‖, at least within the accuracy of our
simulations. Simply put, a fluctuation of twice the size takes twice as long to decay, which
explains that close to the phase transition fixation times are proportional to the system size,
tf ∼ L , which we found in section 3.3.

With the critical exponents ν⊥ and ν‖ at hand, rescaling of the fixation time tf(L , 1) is
easily achieved as well. Note that as a time-like observable tf scales like a longitudinal distance.
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Again employing the phenomenological scaling theory for absorbing state phase transitions,
equations (7a)–(7e), we obtain

tf(L , 1) = L zτ±(1L1/ν⊥), (11)

where z = ν‖/ν⊥ is the dynamical critical exponent. The overall scaling function can be split into
two distinct parts, τ + and τ−, which exhibit characteristic logarithmic and exponential behavior
for 1 > 0 and 1 < 0, respectively. Using this scaling, all data for the fixation times collapse, as
shown in figure 4(b).

In the inactive phase, the density ρ(1, j, L) decays exponentially with j and the absorbing
state, with ρ = 0, is reached fast. The decay length is proportional to ξ‖, which can easily be
found by fitting an exponential function to the measured density profile. Applying finite size
scaling, we again find data collapse for critical exponents ν⊥ = ν‖ = 1.6 ± 0.1; see figure 6(b).

Further evidence for these values of the critical exponents is obtained by calculating the
(active state) correlation functions

0‖(r) = 〈si, j si, j+r〉 − 〈si, j〉〈si, j+r〉, (12a)

0⊥(r) = 〈si, j si+r, j〉 − 〈si, j〉〈si+r, j〉, (12b)

in the bulk. Averages are with respect to all lattice indices i, j and independent realizations. The
correlation functions are expected to behave as

0#(r) ∼ r−σ# exp

(
−

r

ξ#

)
, # ∈ {‖, ⊥}, (13)

where σ# = 2β/ν#. To obtain the correlation lengths we fitted this expression to our data with
the fitting parameters ξ#. In plots of the correlation lengths, we again find good collapse of data
for ν⊥ = ν‖ = 1.6 ± 0.2 (not shown).

Next, we consider the stationary density ρs(1), which equals the fraction of wild-type
sites for large j , which is sufficiently far away from the initial line for the density to relax to its
stationary value. As shown in figure 7(a), a double-logarithmic plot asymptotically gives power
law behavior with the exponent

β = 0.50±0.02. (14)

Deviations from the asymptotic power law are well described by the finite-size scaling form

ρs(1, L) = L−β/ν⊥ g(1L1/ν⊥), (15)

where g(x) is a universal scaling function; cf figure 7(b). Two characteristic regimes can be
distinguished:

g(x) ∼

{
1, x � 1,

xβ, x � 1,
(16)

corresponding to the scaling law ρs ∼ 1β , for a given L and sufficiently far from criticality, and
the scaling law, ρs ∼ L−β/ν⊥ , for a given distance 1 from the critical point and system sizes
smaller than the transverse correlation length, L � ξ⊥.

To measure β ′, the exponent associated with the survival probability when starting from
a single seed, Ps, different initial conditions must be used. Instead of a line composed of only
wild-types, a single wild-type is placed in a line of mutants. A typical realization for these initial
conditions is shown in figure 8(a).
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Figure 7. Wild-type stationary density in the active phase. (a) Simulations for
different lattice sizes started with a line of wild-types as the initial condition in
the active phase. We find a power law with critical exponent β = 0.50 ± 0.02
that, for small 1, holds better in larger systems, a typical finite size effect.
(b) The same data as in (a) after finite size scaling. We find collapse of all data
for critical exponents β = 0.5 and ν⊥ = 1.6.
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Figure 8. Single wild-type initial condition and related observables. (a) Typical
realization for single-seed initial conditions. Wild-types are shown in dark gray
(red), mutants in light gray. By averaging over many realizations of the process
the survival probability of wild-types P( j) and the number of wild-types N ( j)
can be measured as a function of longitudinal position j . For this realization on
a lattice of length L = 128 we used birth rate b = 0.5 and mutation probability
p = 0.15. (b) Survival probability as a function of time. Simulations for different
mutation rates p started with a single wild-type site as initial condition. For pc ≈

0.159, we find a power law for Ps( j) with critical exponent β ′/ν‖ = −0.32 ± 0.2,
indicated by the dashed line. Birth rate b = 0.5 and lattice size L = 1024 are the
same for all shown data.
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Table 1. Critical exponents for the non-equilibrium phase transition to an
absorbing state of the two-species Eden model with mutations and selection.

β β ′ ν‖ ν⊥ z θ

0.50 ± 0.02 0.51 ± 0.07 1.6 ± 0.1 1.6 ± 0.1 1.05 ± 0.05 0.32 ± 0.02

From an ensemble of realizations the survival probability Ps( j) and the mean number of
wild-types N ( j), both as functions of distance j to the initial line, can be extracted. After
transients have decayed and sufficiently far away from the front (where there might exist empty
lattice sites), we find power laws for both quantities when close to the phase transition. For Ps

the exponent is given by −β ′/ν‖, while for N it is denoted by θ . Figure 8(b) shows the results
for Ps( j), from where we obtain β ′/ν‖ = −0.32 ± 0.2. Using our result for ν‖, we find

β ′
= 0.51±0.07. (17)

Similarly, from the simulation data for N ( j) we obtain

θ = 0.32±0.02. (18)

θ is related to the other critical exponents by the generalized hyperscaling relation [70] in d = 1
dimension

θ =
ν⊥ − β − β ′

ν‖

. (19)

Using our previous results for the critical exponents we find good agreement with the above
result, equation (18), within the error margin. The critical exponents for the phase transition to
an absorbing state are summarized in table 1.

For systems with infinitely many absorbing states, like ours, it is known that critical
exponents, especially those related to single seed initial conditions (in our case β ′ and θ ), can
vary significantly with the configuration away from the seed [71, 72]. The correct exponents,
which satisfy the hyperscaling relation of equation (19), are obtained if the configuration away
from the seed is a typical configuration of the absorbing state. In our case this amounts to a
rough front. To check for this dependence of the critical exponents, we initialized single wild-
type seeds at arbitrary front positions of all-mutant Eden models grown to saturation. Data
extraction works similar, but due to roughness and the non-uniqueness of the growth direction
the initial seed is not necessarily the one with the smallest j-value, which complicates the
evaluation slightly. These simulations take more time since independent saturated fronts have
to be generated for every realization, which makes it harder to obtain data with high precision.
However, we find β ′/ν‖ = −0.33 ± 0.03 and θ = 0.31 ± 0.04 (data not shown), which indicates
that our system is robust with respect to the initial configuration. We are therefore confident
that the critical exponents of the phase transition, see table 1, are indeed correct up to the given
precision.

To check if the DP universality class is recovered if roughness is neglected, we also
considered a simplified model with synchronous update rules. Here, an individual at site
(i, j) has two possible parents, at sites (i − 1, j − 1) and (i, j − 1). Depending on their states,
we define the probabilities P(si, j |si−1, j−1, si, j−1) for the type of offspring si, j , incorporating
mutations and selection: if both parents are mutants, the offspring is inevitable mutant as well;
if both parents are wild-types the offspring is wild-type if no mutation happens; if one parent is
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wild-type while the other is a mutant, the mutant reproduces with rate b/(1 + b) and the wild-
type otherwise. In the latter case a mutation can happen, resulting in a mutant offspring. All
events are summarized by the probabilities

P(1| − 1, −1) = 0, (20a)

P(1|1, −1) = P(1| − 1, 1) := p1 =
1 − p

1 + b
, (20b)

P(1|1, 1) := p2 = 1 − p, (20c)

and P(−1|., .) = 1 − P(1|., .). It is easily seen that this corresponds to the Domany–Kinzel
cellular automaton [73], with probabilities p1 and p2. Indeed, for b = 0.5 we find the critical
mutation probability for the flat model pflat

c ≈ 0.077, corresponding to p1 ≈ 0.62 and p2 ≈ 0.93.
This lies well on the transition line of the Domany–Kinzel automaton [74]. As one would
expect, the critical exponents of the flat model are those of the DP universality class (data
not shown). These conclusions are further consolidated by earlier studies for a two-species
ballistic deposition model with kinetics that allows surface growth only at sites where one type
of particles has an exposed position on top of the incidence or neighboring column [60]. These
particular growth rules imply that the surface roughness does not affect the bulk dynamics
such that it can be mapped onto a one-dimensional contact process [61], which is in the DP
universality class [34–37]. In conclusion, the interplay between surface roughening and domain
dynamics in our two-species Eden model is clearly responsible for the deviation of its critical
behavior from that of the DP universality class.

4.2. Front properties

We now turn to characterizing the front of the expanding population, i.e. the surface roughness
properties of the model. As argued in section 3.1, the presence of mutations changes the
roughening behavior of the growth front qualitatively: close to the phase transition large mutant
clusters form extended parts of the leading front and since mutants and wild-types reproduce
with different rates, the front’s roughness is strongly enhanced. In the case of detrimental
mutations, b < 1, mutant-dominated regions trail behind compared to the average front; see,
for example, figure 3, panel (F).

The width is the key observable in the analysis of kinetic surface roughening processes.
These processes can be organized into universality classes, which are characterized by
symmetry properties and the dimensionality of the process under consideration [43–45]. Each
growth model’s universality class has a unique set of two exponents: the growth exponent γ and
the roughness exponent α, defined through

w(L , t) ∼

{
tγ , t � t×,

Lα, t � t×,
(21)

with the crossover time between these two regimes scaling as t× ∼ L z̃, where z̃ = α/γ is the
dynamic roughening exponent.

In the limit of the vanishing mutation rate, p = 0, our model reduces to the Eden model,
which falls into the well-known KPZ universality class [47], with exponents γ = 1/3 and
α = 1/2. For p > 0, the time evolution of the width depends on whether the system is in the
active phase or in the inactive phase. In the inactive phase we find a transiently enhanced width
as compared to the Eden model and a subsequent return to it. We attribute this to mutants
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Figure 9. Width of the growth front as a function of time in the active phase. The
temporal evolution of the width w(t) of the growth front depends on both the
system size L and the distance to the phase transition 1. w initially grows Eden-
like, γ = 1/3 (bold dashed line). Close to the phase transition (i.e. at small 1),
we find a crossover to a growth exponent γ ′

= 0.73 ± 0.03 (bold straight line),
as a result of different growth rates of mutants and wild-types. For intermediate
times two scenarios can be distinguished, see the main text for details: (i) either
the surface width saturates at a finite length-dependent value as a result of finite
system size or (ii) mutant clusters at the front saturate at a size smaller than L .
In the latter case, Eden growth is recovered on large length and time scales. As
the width saturates we recover the Eden roughness exponent α = 1/2 but with
a p-dependent amplitude of the saturation width. In the former case, enhanced
roughening proceeds until saturation. The saturated width then scales like Lα′

,
with a different roughness exponent α′

= 0.91 ± 0.01. All data shown are for
b = 0.5, but results hold for different birth rates b as well.

outcompeting wild-types rapidly, as is typical for the inactive phase, followed by Eden growth
of the resulting mutant front (data not shown). As shortly discussed in section 3, the active
phase is characterized by a heterogeneous front. In finite systems, this is the case until a mutant
cluster covers the whole system size L , which then takes the system into the absorbing state
with subsequent return to Eden-like growth. Therefore, the roughness characteristics of the
heterogeneous front in the active phase can only be analyzed if the absorbing state has not
yet been entered. Hence, for the following analysis, realizations that reach the absorbing state
are stopped, and simulation data are used only up to this point in time.

We now discuss the different regimes and scenarios of surface roughening in the active
phase. Figure 9 displays our numerical results for a range of mutation rates and two different
system sizes. Since we start with an initial condition where the lattice only contains wild-
types, the initial surface roughening is that of a single species, i.e. Eden growth: w ∼ tγ

with γ = 1/3. As time passes, mutants are created, leading to growing mutant clusters. Their
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extension in growth direction evolves like the correlation length ξ‖(1, t, L), which initially
grows proportional to t , as follows from scaling. Since these clusters grow slower than wild-
type clusters this leads to additional surface roughening. As for small t both contributions to
roughening are independent of 1 and L , the width gets dominated by differential expansion
velocities at a crossover time t×,1 =O(1).

As a result of the ensuing strong coupling between domain dynamics and surface
roughness, the interface width then grows more rapidly than in the Eden model. We observe a
regime with an altered growth exponent γ ′

= 0.73 ± 0.03, which becomes more extended upon
approaching the phase transition to the inactive phase, 1 → 0. There are two distinct scenarios
by which this enhanced roughening regime may end: (i) either the surface width saturates at a
finite length-dependent value as a result of finite system size or (ii) mutant clusters at the front
saturate and their typical size reaches the asymptotic extension ξ∞

⊥
∼ 1−ν⊥ 6 L .2

The first case requires that one is sufficiently close to the critical point such that the
cluster size ξ⊥ does not saturate at 1−ν⊥ 6 L , but mutant clusters continue to grow during
the whole roughening process. Then, our simulations show that there is a direct crossover
from enhanced surface roughening, w ∼ tγ ′

, to saturation, w ∼ Lα′

, with a roughness exponent
α′

= 0.91 ± 0.01. The corresponding scaling form close to criticality reads

wc(L , t) = Lγ ′

ŵc(t/L z̃′

) (22)

with the dynamic critical exponent for surface roughening z̃′
= α′/γ ′

= 1.25±0.05;
cf figure 10(a). (Note that deviations from the critical scaling behavior are all due to initial
transient Eden growth: all systems were started with an initial condition of wild-type individuals
only.) A roughening exponent α′ close to unity indicates a very jagged surface. For models with
large roughness exponents, especially for super-roughening with exponents larger than 1 (see,
e.g., [75, 76]), it is known that they may exhibit anomalous scaling [77, 78], in the sense that
the roughness exponent as determined from w(L , t → ∞) may only be an effective exponent.
The actual exponent can be obtained from the structure factor or power spectrum [45, 79, 80]

S(k, t) := 〈h(k, t)h(−k, t)〉, (23)

where h(k, t) is the Fourier transform of the height fluctuations. From equation (21) it follows
that the structure factor of the Eden model scales as

S(k, t) = t (d+2α)/z̃s(kt1/z̃), (24)

with the scaling function

s(x) ∼

{
1, x � 1,

x−d−2α, x � 1.
(25)

The rescaled structure factor of our model is shown by the inset of figure 10(a). For the
trivial case p = 0, we observe data collapse as expected for the Eden model. At criticality
1 = 0 (p = 0.159), the scaling function for the power spectrum changes with time due to the
growth dynamics of mutant clusters, i.e. the time dependence of the cluster size ξ⊥(t). For
asymptotically large times, when a single mutant cluster spans the system, a broad regime
emerges with a roughness exponent α′

= 0.92 ± 0.03 corroborating our results obtained from
analyzing the interface width.

2 A third scenario where the typical lateral extension of mutant clusters reaches the extension of the system ξ⊥ ∼ L
is also possible but excluded by our sampling method.
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Figure 10. Scaling plots for surface roughening in the Eden model with mutation.
(a) Critical scaling. Rescaled width versus time at criticality (p = 0.159) for a
series of system sizes as indicated in the graph. Neglecting initial transients,
all data collapse for α′

= 0.91 ± 0.01 and z̃′
= α′/γ ′

= 1.25±0.05. Both growth
exponent γ ′ and roughening exponent α′ are markedly different from their KPZ
counterparts. The inset shows the rescaled structure factor S(k, t) for system
size L = 512. For the Eden model all data collapse, and from the black solid
line, proportional to k−2, we recover α = 1/2 from equation (25). For the
critical system, 1 = 0, we find an extended scaling regime with S ∼ k−2.85±0.05

(black dashed line) corresponding to α′
= 0.92 ± 0.03. (b) Crossover scaling.

Neglecting initial transients, data can be rescaled with respect to the intrinsic
crossover time t×,2 ∼ 1−ν‖ , where the mutant cluster extension ξ⊥ saturates at
1−ν⊥ . If the system size L is much smaller than ξ∞

⊥
, the front width grows to

saturation with the new growth exponent γ ′
= 0.73 ± 0.03 (black solid line),

whereas for ξ∞

⊥
� L the saturation width is reached after return to Eden-

like roughening with γ = 1/3 (black dashed line). Saturation, due to finite
size, happens where curves deviate from the common envelope and become
horizontal.

This clearly shows that, for 1 → 0, the Eden model with mutations and selection is no
longer in the KPZ universality class, but exhibits different asymptotic roughening behavior.
We attribute this behavior to the strong coupling between critical domain growth and surface
roughening.

Moving further away from the critical point, typical domains may saturate at their
asymptotic value 1−ν⊥ 6 L within a crossover time t×,2 ∼ 1−ν‖ . Then, on length scales larger
than ξ∞

⊥
, roughening proceeds, but slower than before, and one recovers Eden-like roughening

with w ∼ tγ . This regime is most pronounced if L � ξ∞

⊥
, and finally saturates in a constant

surface width with w ∼ Lα. The crossover between critical roughening and return to Eden
roughening is determined by a time scale inherent to the system, which only depends on the
distance to the critical point but not on the system size. We may therefore rescale time by the
crossover time, t×,2 = 1−ν‖ , and rescale width w by the corresponding value w(t×,2) = tγ ′

×,2 =

1−γ ′ν‖ , cf figure 10(b). All curves collapse to a crossover scaling function, from which they only
deviate due to finite size effects.
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5. Conclusion and outlook

A generalization of the Eden model to a two-species model, with uni-directional mutations and
selection due to different reproduction rates, has interesting properties from the viewpoints of
both dynamical phase transitions and kinetic surface roughening. We find that surface roughness
has a marked effect on the critical properties of the absorbing state phase transition. While
reference models [22], which keep the expanding front flat, exhibit DP critical behavior, the
exponents of our generalized Eden model strongly deviate from it. In turn, the mutation-
selection process in the bacterial colony induces an increased surface roughness with exponents
distinct from that of the KPZ universality class.

For our model the critical exponents of the longitudinal and transverse correlation lengths,
ν‖ and ν⊥, are identical within the error margin. As the aspect ratio ξ‖/ξ⊥ can still be different
from unity, this does not make our system isotropic. However, it indicates that there is no longer
a rigorous distinction between a time-like longitudinal and a space-like transverse direction as
for DP. To some degree, this might have been expected from the microscopic update rules of the
Eden model, which have no preferential direction of growth. Indeed, for vanishing birth rate of
mutants, the system can be mapped to isotropic percolation, and it loses any preferential growth
direction. One may also argue that front roughening in concert with locally normal growth of the
interface leads to ‘mixing’ of transversal and longitudinal directions, and thereby promotes the
same scaling behavior of both directions. It remains to be seen how this result can be obtained
from a renormalization group calculation.

The critical exponents summarized in table 1 are significantly different from those of
the DP universality class, which are observed for a broad range of systems exhibiting phase
transitions to absorbing states [34–37]. The stability of the DP universality class is reflected
in the DP hypothesis, a conjecture formulated by Janssen [81] and Grassberger [82]. It asserts
that models characterized by a positive one-component order parameter, which exhibit a phase
transition to a unique absorbing state, belong to the DP universality class, provided that
interactions are short-ranged and no additional symmetries or special kinds of disorder or
fluctuations are present [34–37]. Strictly speaking, our model is not in contradiction with the
DP hypothesis as it does not fulfill the condition of having a unique absorbing state. Instead,
there are infinitely many configurations with only mutants at the front. However, even for models
with infinitely many absorbing states one often finds DP-class universal behavior [71, 72]. What
distinguishes our model is that growth persists in the fluctuating absorbing state of an all mutant
system. Most importantly, there is interplay between surface roughness and bulk properties:
even though we analyzed bulk properties of the system, the dynamics are restricted to the front
and therefore convey imprints of the rough surface. This might also be the reason why it is
difficult to find actual experimental systems that obey DP-like behavior: any non-flat system
may carry signatures of surface roughening in the numerical values of the critical exponents of
the corresponding non-equilibrium phase transition.

The influence of surface roughness on domain boundaries, without the additional
complication of mutations, selection and of merging clusters, is a rather complex problem
on its own. The morphology of the boundary between two distinct but equally fast growing
Eden clusters has previously been analyzed by Derrida and Dickman [48]. Numerically, they
found that the dynamics of the domain boundary depends on the local curvature of the front. It
may perform a subdiffusive or superdiffusive random walk and even move ballistically. For
our model, this implies enhanced complexity, because boundaries are preferentially created
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at protrusions, where wild-types are more prone to be, while merging of domain boundaries
usually occurs at indentations of the front. Coarsening of domains in a two-species Eden model
is the focus of the work by Saito and Müller-Krumbhaar [32], who also considered differential
reproduction rates of the two species. As mutations are absent in their model, the faster growing
species outgrows the slower one exponentially fast. In the neutral case, they show that domain
boundaries exhibit super-diffusive scaling and thereby explain the domain coarsening kinetics
of their simulations. It would be interesting to find a suitable generalization of their analysis to
include the case of irreversible mutations.

There are also growth models where surface roughness and particle configuration at the
front mutually affect each other [49, 50, 56–59]. A theoretically well-studied system is vapor
deposition of binary films containing two different kinds of molecules which have a tendency
to phase separate [58, 59]. Similar to the dynamics of the two-species Eden model, there is
an interplay between surface roughening and phase ordering kinetics: the dynamics of the
domain boundaries and the surface are coupled through the growth kinetics. One main difference
between the models is that for binary films the non-equilibrium roughening process is coupled to
the coarsening dynamics of a thermodynamic model (Ising model) exhibiting detailed balance,
while in our model it is coupled to the far-from-equilibrium dynamics of an absorbing state
phase transition. In the binary film, particles of one type attach to domains containing particles
of mainly the other type. If this is interpreted as ‘mutation’, then mutations are bi-directional
and symmetric in the binary film. In addition, the growth rules differ in some important aspects.
While in our two-species Eden model, the two species have different growth rates, in binary film
growth, particle attachment at domain boundaries and within domains differs [49, 50, 56–59]. A
common finding of these studies on binary films is that phase ordering kinetics increases surface
roughness on length scales comparable to domain size; this is phenomenologically similar to our
findings but the critical exponents are quite different. The reverse coupling of surface roughness
to phase ordering kinetics is subtle and depends on the details of the kinetic growth rules. If
growth at domain boundaries is faster than within domains, the surface roughness imprints its
scaling properties on the domain boundaries [59], as in our case. Else, it appears that the domain
boundaries perform random walks or even show non-universal behavior [48, 58, 59].

The enhanced roughness, which is induced by differential front velocities, bears some
similarities to pinning models [45]. There, inhomogeneities (e.g. obstructions) of the medium
locally reduce the growth speed, similar to mutant clusters in our model. The presence of these
heterogeneities changes the scaling of the interface, since it introduces a length scale ξ⊥, up
to which one finds enhanced roughening. It is found that in the pinned phase, many pinning
models can be mapped to DP, and the roughness of the surface is dominated by the DP critical
exponents [83, 84]. In contrast to pinning models, where the disorder is quenched, the mutant
clusters in the Eden model with mutation are dynamically generated and strongly correlated
with the growth dynamics. We regard the latter as the main reason why the ensuing roughness
and growth exponents are not related to DP.

Summarizing, we here argue that for multi-species range expansion, surface roughness
and domain dynamics interfere with each other, which qualitatively changes both bulk and
front properties. If absorbing front states exist, phase transitions to absorbing states of a new
universality class are possible. More research is needed to explore the coupling between surface
roughening and evolutionary dynamics of range-expansion scenarios. It would be especially
interesting to look at systems where the reproduction rate of an individual depends on the
local composition of the front as might be the case in growing biofilms [24]. Such systems,
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where growth depends on a population’s composition, have been analyzed in the context of one-
dimensional wave propagation [85], the dilemma of cooperation in spatial settings [86], games
with cyclic dominance [87] and structured populations [88]. A discrete 2d growth model, which
incorporates these effects, would be most interesting to analyze with the methods developed in
this paper. Moreover, the universality class of our model should be tested for different lattices,
and critical exponents should be determined for higher-dimensional setups.
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[36] Ódor G 2004 Universality classes in nonequilibrium lattice systems Rev. Mod. Phys. 76 663–724
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