211 research outputs found
Algorithm of reconstruction for electromagnetic shower analysis in emulsion cloud chambers
NeutrinosThis note describes an algorithm of reconstruction for electromagnetic cascades in emulsion cloud chambers. This algorithm, performed under the ROOT framework, is tested over MC simulations and experimental data (6 GeV electrons, dry scan)
A prototype liquid Argon Time Projection Chamber for the study of UV laser multi-photonic ionization
This paper describes the design, realization and operation of a prototype
liquid Argon Time Projection Chamber (LAr TPC) detector dedicated to the
development of a novel online monitoring and calibration system exploiting UV
laser beams. In particular, the system is intended to measure the lifetime of
the primary ionization in LAr, in turn related to the LAr purity level. This
technique could be exploited by present and next generation large mass LAr TPCs
for which monitoring of the performance and calibration plays an important
role. Results from the first measurements are presented together with some
considerations and outlook.Comment: 26 pages, 27 figure
The OPERA experiment Target Tracker
The main task of the Target Tracker detector of the long baseline neutrino
oscillation OPERA experiment is to locate in which of the target elementary
constituents, the lead/emulsion bricks, the neutrino interactions have occurred
and also to give calorimetric information about each event. The technology used
consists in walls of two planes of plastic scintillator strips, one per
transverse direction. Wavelength shifting fibres collect the light signal
emitted by the scintillator strips and guide it to both ends where it is read
by multi-anode photomultiplier tubes. All the elements used in the construction
of this detector and its main characteristics are described.Comment: 25 pages, submitted to Nuclear Instrument and Method
Search for spontaneous muon emission from lead nuclei
We describe a possible search for muonic radioactivity from lead nuclei using
the base elements ("bricks" composed by lead and nuclear emulsion sheets) of
the long-baseline OPERA neutrino experiment. We present the results of a Monte
Carlo simulation concerning the expected event topologies and estimates of the
background events. Using few bricks, we could reach a good sensitivity level.Comment: 12 pages, 4 figure
Electron/pion separation with an Emulsion Cloud Chamber by using a Neural Network
We have studied the performance of a new algorithm for electron/pion
separation in an Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion
films. The software for separation consists of two parts: a shower
reconstruction algorithm and a Neural Network that assigns to each
reconstructed shower the probability to be an electron or a pion. The
performance has been studied for the ECC of the OPERA experiment [1].
  The  separation algorithm has been optimized by using a detailed Monte
Carlo simulation of the ECC and tested on real data taken at CERN (pion beams)
and at DESY (electron beams). The algorithm allows to achieve a 90% electron
identification efficiency with a pion misidentification smaller than 1% for
energies higher than 2 GeV
Activity standardisation of 177Lu.
<sup>177</sup> Lu decays through low-energy β <sup>-</sup> - and γ-emissions in addition to conversion and Auger electrons. To support the use of this radiopharmaceutical in Switzerland, a <sup>177</sup> Lu solution was standardised using the β-γ coincidence technique, as well as the TDCR method. The solution had no <sup>177m</sup> Lu impurity. Primary coincidence measurements, with plastic scintillators for beta detection, were carried out using both analogue and digital electronics. TDCR measurements using only defocusing were also made. Monte Carlo calculations were used to compute the detection efficiency. The coincidence measurements with both analogue and digital electronics are compatible within one standard uncertainty, but they are lower than (and discrepant with) the TDCR measurements. An ampoule of this solution was submitted to the BIPM as a contribution to the Système International de Référence
A magnetically-driven piston pump for ultra-clean applications
A magnetically driven piston pump for xenon gas recirculation is presented.
The pump is designed to satisfy extreme purity and containment requirements, as
is appropriate for the recirculation of isotopically enriched xenon through the
purification system and large liquid xenon TPC of EXO-200. The pump, using
sprung polymer gaskets, is capable of pumping more than 16 standard liters per
minute (SLPM) of xenon gas with 750 torr differential pressure.Comment: 6 pages, 5 figure
Emulsion sheet doublets as interface trackers for the OPERA experiment
New methods for efficient and unambiguous interconnection between electronic
counters and target units based on nuclear photographic emulsion films have
been developed. The application to the OPERA experiment, that aims at detecting
oscillations between mu neutrino and tau neutrino in the CNGS neutrino beam, is
reported in this paper. In order to reduce background due to latent tracks
collected before installation in the detector, on-site large-scale treatments
of the emulsions ("refreshing") have been applied. Changeable Sheet (CSd)
packages, each made of a doublet of emulsion films, have been designed,
assembled and coupled to the OPERA target units ("ECC bricks"). A device has
been built to print X-ray spots for accurate interconnection both within the
CSd and between the CSd and the related ECC brick. Sample emulsion films have
been extensively scanned with state-of-the-art automated optical microscopes.
Efficient track-matching and powerful background rejection have been achieved
in tests with electronically tagged penetrating muons. Further improvement of
in-doublet film alignment was obtained by matching the pattern of low-energy
electron tracks. The commissioning of the overall OPERA alignment procedure is
in progress.Comment: 19 pages, 19 figure
A linear RFQ ion trap for the Enriched Xenon Observatory
The design, construction, and performance of a linear radio-frequency ion
trap (RFQ) intended for use in the Enriched Xenon Observatory (EXO) are
described. EXO aims to detect the neutrinoless double-beta decay of Xe
to Ba. To suppress possible backgrounds EXO will complement the
measurement of decay energy and, to some extent, topology of candidate events
in a Xe filled detector with the identification of the daughter nucleus
(Ba). The ion trap described here is capable of accepting, cooling, and
confining individual Ba ions extracted from the site of the candidate
double-beta decay event. A single trapped ion can then be identified, with a
large signal-to-noise ratio, via laser spectroscopy.Comment: 18 pages, pdflatex, submitted to NIM 
- …
