14 research outputs found
Factors influencing the higher incidence of tuberculosis among migrants and ethnic minorities in the UK.
Migrants and ethnic minorities in the UK have higher rates of tuberculosis (TB) compared with the general population. Historically, much of the disparity in incidence between UK-born and migrant populations has been attributed to differential pathogen exposure, due to migration from high-incidence regions and the transnational connections maintained with TB endemic countries of birth or ethnic origin. However, focusing solely on exposure fails to address the relatively high rates of progression to active disease observed in some populations of latently infected individuals. A range of factors that disproportionately affect migrants and ethnic minorities, including genetic susceptibility, vitamin D deficiency and co-morbidities such as diabetes mellitus and HIV, also increase vulnerability to infection with Mycobacterium tuberculosis (M.tb) or reactivation of latent infection. Furthermore, ethnic socio-economic disparities and the experience of migration itself may contribute to differences in TB incidence, as well as cultural and structural barriers to accessing healthcare. In this review, we discuss both biological and anthropological influences relating to risk of pathogen exposure, vulnerability to infection or development of active disease, and access to treatment for migrant and ethnic minorities in the UK
Chronic granulomatous disease in Morocco: Genetic, immunological, and clinical features of 12 patients from 10 kindreds
Purpose: Chronic granulomatous disease (CGD) is characterized by an inability of phagocytes to produce reactive oxygen species (ROS), which are required to kill some microorganisms. CGD patients are known to suffer from recurrent bacterial and/or fungal infections from the first year of life onwards. From 2009 to 2013, 12 cases of CGD were diagnosed in Morocco. We describe here these Moroccan cases of CGD. Methods: We investigated the genetic, immunological and clinical features of 12 Moroccan patients with CGD from 10 unrelated kindreds. Results: All patients were children suffering from recurrent bacterial and/or fungal infections. All cases displayed impaired NADPH oxidase activity in nitroblue tetrazolium (NBT), dihydrorhodamine (DHR) or 2′,7′ dichlorofluorescein diacetate (DCFH-DA) assays. Mutation analysis revealed the presence of four different mutations of CYBB in four kindreds, a recurrent mutation of NCF1 in three kindreds, and a new mutation of NCF2 in three patients from a single kindred. A large deletion of CYBB gene has detected in a patient. The causal mutation in the remaining one kindred was not identified. Conclusion: The clinical features and infectious agents found in these patients were similar to those in CGD patients from elsewhere. The results of mutation analysis differed between kindreds, revealing a high level of genetic and allelic heterogeneity among Moroccan CGD patients. The small number of patients in our cohort probably reflects a lack of awareness of physicians. Further studies on a large cohort are required to determine the incidence and prevalence of the disease, and to improve the description of the genetic and clinical features of CGD patients in Morocco. © 2014 Springer Science+Business Media
Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency
Inborn errors of DNA repair or replication underlie a variety of clinical phenotypes. We studied 5 patients from 4 kindreds, all of whom displayed intrauterine growth retardation, chronic neutropenia, and NK cell deficiency. Four of the 5 patients also had postnatal growth retardation. The association of neutropenia and NK cell deficiency, which is unusual among primary immunodeficiencies and bone marrow failures, was due to a blockade in the bone marrow and was mildly symptomatic. We discovered compound heterozygous rare mutations in Go-Ichi-Ni-San (GINS) complex subunit 1 (GINS1, also known as PSF1) in the 5 patients. The GINS complex is essential for eukaryotic DNA replication, and homozygous null mutations of GINS component-encoding genes are embryonic lethal in mice. The patients' fibroblasts displayed impaired GINS complex assembly, basal replication stress, impaired checkpoint signaling, defective cell cycle control, and genomic instability, which was rescued by WT GINS1. The residual levels of GINS1 activity reached 3% to 16% in patients' cells, depending on their GINS1 genotype, and correlated with the severity of growth retardation and the in vitro cellular phenotype. The levels of GINS1 activity did not influence the immunological phenotype, which was uniform. Autosomal recessive, partial GINS1 deficiency impairs DNA replication and underlies intra-uterine (and postnatal) growth retardation, chronic neutropenia, and NK cell deficiency
Avarietyofalu-mediated copy number variations can underlie il-12rβ1 deficiency
Purpose Inborn errors of IFN-γ immunity underlie Mendelian susceptibility to mycobacterial disease (MSMD). Autosomal recessive complete IL-12Rβ1 deficiency is the most frequent genetic etiology of MSMD. Only two of the 84 known mutations are copy number variations (CNVs), identified in two of the 213 IL-12Rβ1-deficient patients and two of the 164 kindreds reported. These two CNVs are large deletions found in the heterozygous or homozygous state. We searched for novel families with IL-12Rβ1 deficiency due to CNVs. Methods We studied six MSMD patients from five unrelated kindreds displaying adverse reactions to BCG vaccination. Three of the patients also presented systemic salmonellosis, two had mucocutaneous candidiasis, and one had disseminated histoplasmosis. We searched for CNVs and other variations by IL12RB1-targeted next-generation sequencing (NGS). Results We identified six new IL-12Rβ1-deficient patients with a complete loss of IL-12Rβ1 expression on phytohemagglutinin-activated T cells and/or EBV-transformed B cells. The cells of these patients did not respond to IL-12 and IL-23. Five different CNVs encompassing IL12RB1 (four deletions and one duplication) were identified in these patients by NGS coverage analysis, either in the homozygous state (n =1)orintrans (n = 4) with a single-nucleotide variation (n = 3) or a small indel (n = 1). Seven of the nine mutations are novel. Interestingly, four of the five CNVs were predicted to be driven by nearby Alu elements, as well as the two previously reported large deletions. The IL12RB1 locus is actually enriched in Alu elements (44.7%), when compared with the rest of the genome (10.5%). Conclusion The IL12RB1 locus is Alu-enriched and therefore prone to rearrangements at various positions. CNVs should be considered in the genetic diagnosis of IL-12Rβ1 deficiency. © �Springer Science+Business Media, LLC, part of Springer Nature 2018
The human CIB1-EVER1-EVER2 complex governs keratinocyte-intrinsic immunity to β-papillomaviruses
Patients with epidermodysplasia verruciformis (EV) and biallelic null mutations of; TMC6; (encoding EVER1) or; TMC8; (EVER2) are selectively prone to disseminated skin lesions due to keratinocyte-tropic human β-papillomaviruses (β-HPVs), which lack E5 and E8. We describe EV patients homozygous for null mutations of the; CIB1; gene encoding calcium- and integrin-binding protein-1 (CIB1). CIB1 is strongly expressed in the skin and cultured keratinocytes of controls but not in those of patients. CIB1 forms a complex with EVER1 and EVER2, and CIB1 proteins are not expressed in EVER1- or EVER2-deficient cells. The known functions of EVER1 and EVER2 in human keratinocytes are not dependent on CIB1, and CIB1 deficiency does not impair keratinocyte adhesion or migration. In keratinocytes, the CIB1 protein interacts with the HPV E5 and E8 proteins encoded by α-HPV16 and γ-HPV4, respectively, suggesting that this protein acts as a restriction factor against HPVs. Collectively, these findings suggest that the disruption of CIB1-EVER1-EVER2-dependent keratinocyte-intrinsic immunity underlies the selective susceptibility to β-HPVs of EV patients
IMMUNODEFICIENCIES. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations.
Human inborn errors of immunity mediated by the cytokines interleukin (IL)-17A/F underlie mucocutaneous candidiasis, whereas inborn errors of interferon (IFN)-γ immunity underlie mycobacterial disease. We report the discovery of bi-allelic RORC loss-of-function mutations in seven individuals from three kindreds of different ethnic origins with both candidiasis and mycobacteriosis. The lack of functional RORγ and RORγT isoforms resulted in the absence of IL-17A/F-producing T cells in these individuals, probably accounting for their chronic candidiasis. Unexpectedly, leukocytes from RORγ- and RORγT-deficient individuals also displayed an impaired IFN-γ response to Mycobacterium. This principally reflected profoundly defective IFN-γ production by circulating γδ T cells and CD4(+)CCR6(+) CXCR3(+) αβ T cells. In humans, both mucocutaneous immunity to Candida and systemic immunity to Mycobacterium require RORγ, or RORγT, or both