128 research outputs found

    BEAM PROFILE MEASUREMENT WITH OPTICAL FIBER SENSORS AT FLASH

    Get PDF
    Abstract The system is intended to determine the beam profile at the DESY-FLASH undulator section as well as measuring beam losses with high spatial resolution. The measurement setup is based on wire scanners, optical fibers which are symmetrically mounted around the beam line over the full length (30 m) of the undulator section, a signal conditioning unit and a data acquisition system. The optical fibers are used as beam loss sensors, and depending on the software configuration, the setup is working either as a beam loss position monito

    Pore confinement effects and stabilization of carbon nitride oligomers in macroporous silica for photocatalytic hydrogen production

    Get PDF
    An ordered macroporous host (mac-SiO2) has been used to prevent aggregation of layered photocatalysts based on carbon nitride. Using typical carbon nitride synthesis conditions, cyanamide was condensed at 550 °C in the presence and absence of mac-SiO2. Condensation in the absence of mac-SiO2 results in materials with structural characteristics consistent with the carbon nitride, melon, accompanied by ca. 2 wt% carbonization. For mac-SiO2 supported materials, condensation occurs with greater carbonization (ca. 6 wt%). On addition of 3 wt% Pt cocatalyst photocatalytic hydrogen production under visible light is found to be up to 10 times greater for the supported composites. Time-resolved photoluminescence spectroscopy shows that excited state relaxation is more rapid for the mac-SiO2 supported materials suggesting faster electron-hole recombination and that supported carbon nitride does not exhibit improved charge separation. CO2 temperature programmed desorption indicates that enhanced photoactivity of supported carbon nitride is attributable to an increased surface area compared to bulk carbon nitride and an increase in the concentration of weakly basic catalytic sites, consistent with carbon nitride oligomers

    Carbon nitrides: synthesis and characterization of a new class of functional materials

    Get PDF
    Carbon nitride compounds with high N[thin space (1/6-em)]:[thin space (1/6-em)]C ratios and graphitic to polymeric structures are being investigated as potential next-generation materials for incorporation in devices for energy conversion and storage as well as for optoelectronic and catalysis applications. The materials are built from C- and N-containing heterocycles with heptazine or triazine rings linked via sp2-bonded N atoms (N(C)3 units) or –NH– groups. The electronic, chemical and optical functionalities are determined by the nature of the local to extended structures as well as the chemical composition of the materials. Because of their typically amorphous to nanocrystalline nature and variable composition, significant challenges remain to fully assess and calibrate the structure–functionality relationships among carbon nitride materials. It is also important to devise a useful and consistent approach to naming the different classes of carbon nitride compounds that accurately describes their chemical and structural characteristics related to their functional performance. Here we evaluate the current state of understanding to highlight key issues in these areas and point out new directions in their development as advanced technological materials.Our work on carbon nitride materials has been supported by the EPSRC (EP/L017091/1) and the EU Graphene Flagship grant agreement No. 696656 - GrapheneCore1. Additional support to advance the science and technology of these materials was also received from the UCL Enterprise Fund and the Materials Innovation Impact Acceleration funding enabled by the UK EPSRC

    The plasmon band in noble metal nanoparticles : an introduction to theory and applications

    No full text

    How does confinement affect the catalytic activity of mesoporous materials?

    No full text

    Hard templates for soft materials : creating nanostructured organic materials

    No full text
    • …
    corecore