274 research outputs found

    Larval behaviour, dispersal and population connectivity in the deep sea

    Get PDF
    Ecosystem connectivity is an essential consideration for marine spatial planning of competing interests in the deep sea. Immobile, adult communities are connected through freely floating larvae, depending on new recruits for their health and to adapt to external pressures. We hypothesize that the vertical swimming ability of deep-sea larvae, before they permanently settle at the bottom, is one way larvae can control dispersal. We test this hypothesis with more than 3x108 simulated particles with a range of active swimming behaviours embedded within the currents of a high-resolution ocean model. Despite much stronger horizontal ocean currents, vertical swimming of simulated larvae can have an order of magnitude impact on dispersal. These strong relationships between larval dispersal, pathways, and active swimming demonstrate that lack of data on larval behaviour traits is a serious impediment to modelling deep-sea ecosystem connectivity; this uncertainty greatly limits our ability to develop ecologically coherent marine protected area networks

    Amphiphilic block copolymers as stabilizers in emulsion polymerization: Effects of molecular weight dispersity and evidence of self-folding behavior

    Get PDF
    Emulsion polymerizations, used to produce many commodity materials, require stabilizing agents to prevent phase separation. Incorporation of these stabilizers in the final polymer may have negative effects on product properties, so the design of new stabilizers is being actively pursued. Amphiphilic diblock copolymers are a promising type of emulsion polymerization stabilizer and are the focus of this work (Fig. 1). First, the tolerance of an amphiphilic diblock copolymer stabilizer’s performance to high molecular weight dispersity and homopolymer impurity has been investigated. Polystyrene-b-poly(acrylic acid) block copolymers were studied due to their previously demonstrated efficacy as stabilizers in emulsion polymerization, and their similarity to commercially important polystyrene-r-poly(acrylic acid) stabilizers. Neither greater molecular weight dispersity nor homopolymer impurity was found to negatively impact the stabilization performance of these block copolymers, suggesting that the economically unfavorable conditions required to achieve low molecular weight dispersity and homopolymer impurity may be avoided. We then examined novel polystyrene-b-[polystyrene-r-poly(acrylic acid)] block-random copolymers which were shown to stabilize emulsion polymerizations with up to 50 weight percent solids content, exceeding what was possible using the polystyrene-b-poly(acrylic acid) block copolymers. Of even greater significance and scientific value is that the block-random copolymers were also observed to have unusual solution behavior, self-folding rather than self-assembling, to give single chain nanoparticles. Emulsion polymerizations stabilized by these block-random copolymers had a total particle surface area which was directly proportional to the stabilizer concentration and was unaffected by polymerization kinetics. A novel “seeded-coagulative” emulsion polymerization mechanism has been proposed to explain these results, which were unexplainable by any known emulsion polymerization mechanism. Please click Additional Files below to see the full abstrac

    Tissue inhibitor of metalloproteinases-3 mediates the death of immature oligodendrocytes via TNF-α/TACE in focal cerebral ischemia in mice

    Get PDF
    Abstract Background and Purpose Oligodendrocyte (OL) death is important in focal cerebral ischemia. TIMP-3 promotes apoptosis in ischemic neurons by inhibiting proteolysis of TNF-α superfamily of death receptors. Since OLs undergo apoptosis during ischemia, we hypothesized that TIMP-3 contributes to OL death. Methods Middle cerebral artery occlusion (MCAO) was induced in Timp-3 knockout (KO) and wild type (WT) mice with 24 or 72 h of reperfusion. Cell death in white matter was investigated by stereology and TUNEL. Mature or immature OLs were identified using antibodies against glutathione S-transferase-π (GST-π) and galactocerebroside (GalC), respectively. Expression and level of proteins were examined using immunohistochemistry and immunoblotting. Protein activities were determined using a FRET peptide. Results Loss of OL-like cells was detected at 72 h only in WT ischemic white matter where TUNEL showed greater cell death. TIMP-3 expression was increased in WT reactive astrocytes. GST-π was reduced in ischemic white matter of WT mice compared with WT shams with no difference between KO and WT at 72 h. GalC level was significantly increased in both KO and WT ischemic white matter at 72 h. However, the increase in GalC in KO mice was significantly higher than WT; most TUNEL-positive cells in ischemic white matter expressed GalC, suggesting TIMP-3 deficiency protects the immature OLs from apoptosis. There were significantly higher levels of cleaved caspase-3 at 72 h in WT white matter than in KO. Greater expression of MMP-3 and -9 was seen in reactive astrocytes and/or microglia/macrophages in WT at 72 h. We found more microglia/macrophages in WT than in KO, which were the predominant source of increased TNF-α detected in the ischemic white matter. TACE activity was significantly increased in ischemic WT white matter, which was expressed in active microglia/macrophages and OLs. Conclusions Our results suggested that focal ischemia leads to proliferation of immature OLs in white matter and that TIMP-3 contributes to a caspase-3-dependent immature OL death via TNF-α-mediated neuroinflammation. Future studies will be needed to delineate the role of MMP-3 and MMP-9 that were increased in the Timp-3 wild type

    Subpolar North Atlantic overturning and gyre-scale circulation in the summers of 2014 and 2016

    Get PDF
    The Atlantic Meridional Overturning Circulation (AMOC) is a key component of the global climate system through its transport of heat and freshwater. The subpolar North Atlantic (SPNA) is a region where the AMOC is actively developed and shaped though mixing and water mass transformation, and where large amounts of heat are released to the atmosphere. Two hydrographic trans-basin sections in the summers of 2014 and 2016 provide highly spatially resolved views of the SPNA velocity and property fields on a line from Canada to Greenland to Scotland. Estimates of the AMOC, isopycnal (gyre-scale) transport, and heat and freshwater transport are derived from the observations. The overturning circulation, the maximum in northward transport integrated from the surface to seafloor and computed in density space, has a high range, with 20.6 ± 4.7 Sv in June-July 2014 and 10.6 ± 4.3 Sv in May-August 2016. In contrast the isopycnal (gyre-scale) circulation was lowest in summer 2014: 41.3 ± 8.2 Sv compared to 58.6 ± 7.4 Sv in 2016. The heat transport (0.39 ± 0.08 PW in summer 2014, positive is northwards) was highest for the section with the highest AMOC, and the freshwater transport was largest in summer 2016 when the isopycnal circulation was high (-0.25 ± 0.08 Sv). Up to 65% of the heat and freshwater transport was carried by the isopycnal circulation, with isopycnal property transport highest in the western Labrador Sea and the eastern basins (Iceland Basin to Scotland)

    Transcription restores DNA repair to heterochromatin, determining regional mutation rates in cancer genomes

    Get PDF
    SummarySomatic mutations in cancer are more frequent in heterochromatic and late-replicating regions of the genome. We report that regional disparities in mutation density are virtually abolished within transcriptionally silent genomic regions of cutaneous squamous cell carcinomas (cSCCs) arising in an XPC−/− background. XPC−/− cells lack global genome nucleotide excision repair (GG-NER), thus establishing differential access of DNA repair machinery within chromatin-rich regions of the genome as the primary cause for the regional disparity. Strikingly, we find that increasing levels of transcription reduce mutation prevalence on both strands of gene bodies embedded within H3K9me3-dense regions, and only to those levels observed in H3K9me3-sparse regions, also in an XPC-dependent manner. Therefore, transcription appears to reduce mutation prevalence specifically by relieving the constraints imposed by chromatin structure on DNA repair. We model this relationship among transcription, chromatin state, and DNA repair, revealing a new, personalized determinant of cancer risk

    PLANCK COLD CLUMPS IN THE lambda ORIONIS COMPLEX. I. DISCOVERY OF AN EXTREMELY YOUNG CLASS 0 PROTOSTELLAR OBJECT AND A PROTO-BROWN DWARF CANDIDATE IN THE BRIGHT-RIMMED CLUMP PGCC G192.32-11.88

    Get PDF
    We are performing a series of observations with ground-based telescopes toward Planck Galactic cold clumps (PGCCs) in the lambda Orionis complex in order to systematically investigate the effects of stellar feedback. In the particular case of PGCC G192.32-11.88, we discovered an extremely young Class 0 protostellar object (G192N) and a proto-brown dwarf candidate (G192S). G192N and G192S are located in a gravitationally bound brightrimmed clump. The velocity and temperature gradients seen in line emission of CO isotopologues indicate that PGCC G192.32-11.88 is externally heated and compressed. G192N probably has the lowest bolometric luminosity (similar to 0.8 L-circle dot) and accretion rate (6.3 x 10(-7) M-circle dot yr(-1)) when compared with other young Class 0 sources (e.g., PACS Bright Red Sources) in the Orion complex. It has slightly larger internal luminosity (0.21 +/- 0.01 L-circle dot) and outflow velocity (similar to 14 km s(-1)) than the predictions of first hydrostatic cores (FHSCs). G192N might be among the youngest Class 0 sources, which are slightly more evolved than an FHSC. Considering its low internal luminosity (0.08 +/- 0.01 L-circle dot) and accretion rate (2.8 x 10(-8) M-circle dot yr(-1)), G192S is an ideal proto-brown dwarf candidate. The star formation efficiency (similar to 0.3%-0.4%) and core formation efficiency (similar to 1%) in PGCC G192.32-11.88 are significantly smaller than in other giant molecular clouds or filaments, indicating that the star formation therein is greatly suppressed owing to stellar feedback.Peer reviewe

    Killer immunoglobulin-like receptor and human leukocyte antigen-C genotypes in rheumatoid arthritis primary responders and non-responders to anti-TNF-α therapy

    Get PDF
    The identification of patients who will respond to anti-tumor necrosis factor alpha (anti-TNF-α) therapy will improve the efficacy, safety, and economic impact of these agents. We investigated whether killer cell immunoglobulin-like receptor (KIR) genes are related to response to anti-TNF-α therapy in patients with rheumatoid arthritis (RA). Sixty-four RA patients and 100 healthy controls were genotyped for 16 KIR genes and human leukocyte antigen-C (HLA-C) group 1/2 using polymerase chain reaction sequence-specific oligonucleotide probes (PCR-SSOP). Each patient received anti-TNF-α therapy (adalimumab, etanercept, or infliximab), and clinical responses were evaluated after 3 months using the disease activity score in 28 joints (DAS28). We investigated the correlations between the carriership of KIR genes, HLA-C group 1/2 genes, and clinical data with response to therapy. Patients responding to therapy showed a significantly higher frequency of KIR2DS2/KIR2DL2 (67.7% R vs. 33.3% NR; P = 0.012). A positive clinical outcome was associated with an activating KIR–HLA genotype; KIR2DS2(+)HLA-C group 1/2 homozygous. Inversely, non-response was associated with the relatively inhibitory KIR2DS2(–)HLA-C group 1/2 heterozygous genotype. The KIR and HLA-C genotype of an RA patient may provide predictive information for response to anti-TNF-α therapy
    • 

    corecore