1,998 research outputs found
Interpreting the extended emission around three nearby debris disc host stars
Cool debris discs are a relic of the planetesimal formation process around
their host star, analogous to the solar system's Edgeworth-Kuiper belt. As
such, they can be used as a proxy to probe the origin and formation of
planetary systems like our own. The Herschel Open Time Key Programmes "DUst
around NEarby Stars" (DUNES) and "Disc Emission via a Bias-free Reconnaissance
in the Infrared/Submillimetre" (DEBRIS) observed many nearby, sun-like stars at
far-infrared wavelengths seeking to detect and characterize the emission from
their circumstellar dust. Excess emission attributable to the presence of dust
was identified from around 20% of stars. Herschel's high angular
resolution ( 7" FWHM at 100 m) provided the capacity for resolving
debris belts around nearby stars with radial extents comparable to the solar
system (50 to 100 au). As part of the DUNES and DEBRIS surveys, we obtained
observations of three debris disc stars, HIP 22263 (HD 30495), HIP 62207 (HD
110897), and HIP 72848 (HD 131511), at far-infrared wavelengths with the
Herschel PACS instrument. Combining these new images and photometry with
ancilliary data from the literature, we undertook simultaneous multi-wavelength
modelling of the discs' radial profiles and spectral energy distributions using
three different methodologies: single annulus, modified black body, and a
radiative transfer code. We present the first far-infrared spatially resolved
images of these discs and new single-component debris disc models. We
characterize the capacity of the models to reproduce the disc parameters based
on marginally resolved emission through analysis of two sets of simulated
systems (based on the HIP 22263 and HIP 62207 data) with the noise levels
typical of the Herschel images. We find that the input parameter values are
recovered well at noise levels attained in the observations presented here.Comment: 13 pages, 5 figures, 5 tables, accepted for publication in A&
The influence of dust grain porosity on the analysis of debris disc observations
Debris discs are often modelled assuming compact dust grains, but more and more evidence for the presence of porous grains is found. We aim at quantifying the systematic errors introduced when modelling debris discs composed of porous dust with a disc model assuming spherical, compact grains. We calculate the optical dust properties derived via the fast, but simple effective medium theory. The theoretical lower boundary of the size distribution – the so-called ‘blowout size’ – is compared in the cases of compact and porous grains. Finally, we simulate observations of hypothetical debris discs with different porosities and feed them into a fitting procedure using only compact grains. The deviations of the results for compact grains from the original model based on porous grains are analysed. We find that the blowout size increases with increasing grain porosity up to a factor of 2. An analytical approximation function for the blowout size as a function of porosity and stellar luminosity is derived. The analysis of the geometrical disc set-up, when constrained by radial profiles, is barely affected by the porosity. However, the determined minimum grain size and the slope of the grain size distribution derived using compact grains are significantly overestimated. Thus, the unexpectedly high ratio of minimum grain size to blowout size found by previous studies using compact grains can be partially described by dust grain porosity, although the effect is not strong enough to completely explain the trend
In vivo E2F reporting reveals efficacious schedules of MEK1/2–CDK4/6 targeting and mTOR–s6 resistance mechanisms
Targeting cyclin-dependent kinases 4/6 (CDK4/6) represents a therapeutic option in combination with BRAF inhibitor and/or MEK inhibitor (MEKi) in melanoma; however, continuous dosing elicits toxicities in patients. Using quantitative and temporal in vivo reporting, we show that continuous MEKi with intermittent CDK4/6 inhibitor (CDK4/6i) led to more complete tumor responses versus other combination schedules. Nevertheless, some tumors acquired resistance that was associated with enhanced phosphorylation of ribosomal S6 protein. These data were supported by phospho-S6 staining of melanoma biopsies from patients treated with CDK4/6i plus targeted inhibitors. Enhanced phospho-S6 in resistant tumors provided a therapeutic window for the mTORC1/2 inhibitor AZD2014. Mechanistically, upregulation or mutation of NRAS was associated with resistance in in vivo models and patient samples, respectively, and mutant NRAS was sufficient to enhance resistance. This study utilizes an in vivo reporter model to optimize schedules and supports targeting mTORC1/2 to overcome MEKi plus CDK4/6i resistance. SIGnIFICAnCE: Mutant BRAF and NRAS melanomas acquire resistance to combined MEK and CDK4/6 inhibition via upregulation of mTOR pathway signaling. This resistance mechanism provides the preclinical basis to utilize mTORC1/2 inhibitors to improve MEKi plus CDK4/6i drug regimens
Simultaneous Water Vapor and Dry Air Optical Path Length Measurements and Compensation with the Large Binocular Telescope Interferometer
The Large Binocular Telescope Interferometer uses a near-infrared camera to
measure the optical path length variations between the two AO-corrected
apertures and provide high-angular resolution observations for all its science
channels (1.5-13 m). There is however a wavelength dependent component to
the atmospheric turbulence, which can introduce optical path length errors when
observing at a wavelength different from that of the fringe sensing camera.
Water vapor in particular is highly dispersive and its effect must be taken
into account for high-precision infrared interferometric observations as
described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this
paper, we describe the new sensing approach that has been developed at the LBT
to measure and monitor the optical path length fluctuations due to dry air and
water vapor separately. After reviewing the current performance of the system
for dry air seeing compensation, we present simultaneous H-, K-, and N-band
observations that illustrate the feasibility of our feedforward approach to
stabilize the path length fluctuations seen by the LBTI nuller.Comment: SPIE conference proceeding
The gradient of potential vorticity, quaternions and an orthonormal frame for fluid particles
The gradient of potential vorticity (PV) is an important quantity because of
the way PV (denoted as ) tends to accumulate locally in the oceans and
atmospheres. Recent analysis by the authors has shown that the vector quantity
\bdB = \bnabla q\times \bnabla\theta for the three-dimensional incompressible
rotating Euler equations evolves according to the same stretching equation as
for \bom the vorticity and \bB, the magnetic field in magnetohydrodynamics
(MHD). The \bdB-vector therefore acts like the vorticity \bom in Euler's
equations and the \bB-field in MHD. For example, it allows various analogies,
such as stretching dynamics, helicity, superhelicity and cross helicity. In
addition, using quaternionic analysis, the dynamics of the \bdB-vector
naturally allow the construction of an orthonormal frame attached to fluid
particles\,; this is designated as a quaternion frame. The alignment dynamics
of this frame are particularly relevant to the three-axis rotations that
particles undergo as they traverse regions of a flow when the PV gradient
\bnabla q is large.Comment: Dedicated to Raymond Hide on the occasion of his 80th birthda
Incidence of debris discs around FGK stars in the solar neighbourhood
Debris discs are a consequence of the planet formation process and constitute
the fingerprints of planetesimal systems. Their solar system's counterparts are
the asteroid and Edgeworth-Kuiper belts. The aim of this paper is to provide
robust numbers for the incidence of debris discs around FGK stars in the solar
neighbourhood. The full sample of 177 FGK stars with d<20 pc proposed for the
DUNES survey is presented. Herschel/PACS observations at 100 and 160 micron
complemented with data at 70 micron, and at 250, 350 and 500 micron SPIRE
photometry, were obtained. The 123 objects observed by the DUNES collaboration
were presented in a previous paper. The remaining 54 stars, shared with the
DEBRIS consortium and observed by them, and the combined full sample are
studied in this paper. The incidence of debris discs per spectral type is
analysed and put into context together with other parameters of the sample,
like metallicity, rotation and activity, and age.
The subsample of 105 stars with d<15 pc containing 23 F, 33 G and 49 K stars,
is complete for F stars, almost complete for G stars and contains a substantial
number of K stars to draw solid conclusions on objects of this spectral type.
The incidence rates of debris discs per spectral type 0.26 (6 objects with
excesses out of 23 F stars), 0.21 (7 out of 33 G stars) and 0.20 (10 out of 49
K stars), the fraction for all three spectral types together being 0.22 (23 out
of 105 stars). Uncertainties corresponding to a 95% confidence level are given
in the text for all these numbers. The medians of the upper limits of
L_dust/L_* for each spectral type are 7.8E-7 (F), 1.4E-6 (G) and 2.2E-6 (K);
the lowest values being around 4.0E-7. The incidence of debris discs is similar
for active (young) and inactive (old) stars. The fractional luminosity tends to
drop with increasing age, as expected from collisional erosion of the debris
belts.Comment: 31 pages, 15 figures, 10 tables, 2 appendice
Anomalous Quasiparticle Lifetime in Graphite: Band Structure Effects
We report ab initio calculation of quasiparticle lifetimes in graphite, as
determined from the imaginary part of the self-energy operator within the GW
aproximation. The inverse lifetime in the energy range from 0.5 to 3.5 eV above
the Fermi level presents significant deviations from the quadratic behavior
naively expected from Fermi liquid theory. The deviations are explained in
terms of the unique features of the band structure of this material. We also
discuss the experimental results from different groups and make some
predictions for future experiments.Comment: 4 pages, 4 figures, submitted PR
Currents and Superpotentials in classical gauge invariant theories I. Local results with applications to Perfect Fluids and General Relativity
E. Noether's general analysis of conservation laws has to be completed in a
Lagrangian theory with local gauge invariance. Bulk charges are replaced by
fluxes of superpotentials. Gauge invariant bulk charges may subsist when
distinguished one-dimensional subgroups are present. As a first illustration we
propose a new {\it Affine action} that reduces to General Relativity upon gauge
fixing the dilatation (Weyl 1918 like) part of the connection and elimination
of auxiliary fields. It allows a comparison of most gravity superpotentials and
we discuss their selection by the choice of boundary conditions. A second and
independent application is a geometrical reinterpretation of the convection of
vorticity in barotropic nonviscous fluids. We identify the one-dimensional
subgroups responsible for the bulk charges and thus propose an impulsive
forcing for creating or destroying selectively helicity. This is an example of
a new and general Forcing Rule.Comment: 64 pages, LaTeX. Version 2 has two more references and one misprint
corrected. Accepted in Classical and Quantum Gravit
ALMA 1.3 Millimeter Map of the HD 95086 System
Planets and minor bodies such as asteroids, Kuiper-belt objects and comets
are integral components of a planetary system. Interactions among them leave
clues about the formation process of a planetary system. The signature of such
interactions is most prominent through observations of its debris disk at
millimeter wavelengths where emission is dominated by the population of large
grains that stay close to their parent bodies. Here we present ALMA 1.3 mm
observations of HD 95086, a young early-type star that hosts a directly imaged
giant planet b and a massive debris disk with both asteroid- and Kuiper-belt
analogs. The location of the Kuiper-belt analog is resolved for the first time.
The system can be depicted as a broad (0.84), inclined
(30\arcdeg3\arcdeg) ring with millimeter emission peaked at 2006 au
from the star. The 1.3 mm disk emission is consistent with a broad disk with
sharp boundaries from 1066 to 32020 au with a surface density
distribution described by a power law with an index of --0.50.2. Our deep
ALMA map also reveals a bright source located near the edge of the ring, whose
brightness at 1.3 mm and potential spectral energy distribution are consistent
with it being a luminous star-forming galaxy at high redshift. We set
constraints on the orbital properties of planet b assuming co-planarity with
the observed disk.Comment: accepted for publication in A
Determinants of the voltage dependence of G protein modulation within calcium channel β subunits
CaVβ subunits of voltage-gated calcium channels contain two conserved domains, a src-homology-3 (SH3) domain and a guanylate kinase-like (GK) domain with an intervening HOOK domain. We have shown in a previous study that, although Gβγ-mediated inhibitory modulation of CaV2.2 channels did not require the interaction of a CaVβ subunit with the CaVα1 subunit, when such interaction was prevented by a mutation in the α1 subunit, G protein modulation could not be removed by a large depolarization and showed voltage-independent properties (Leroy et al., J Neurosci 25:6984–6996, 2005). In this study, we have investigated the ability of mutant and truncated CaVβ subunits to support voltage-dependent G protein modulation in order to determine the minimal domain of the CaVβ subunit that is required for this process. We have coexpressed the CaVβ subunit constructs with CaV2.2 and α2δ-2, studied modulation by the activation of the dopamine D2 receptor, and also examined basal tonic modulation. Our main finding is that the CaVβ subunit GK domains, from either β1b or β2, are sufficient to restore voltage dependence to G protein modulation. We also found that the removal of the variable HOOK region from β2a promotes tonic voltage-dependent G protein modulation. We propose that the absence of the HOOK region enhances Gβγ binding affinity, leading to greater tonic modulation by basal levels of Gβγ. This tonic modulation requires the presence of an SH3 domain, as tonic modulation is not supported by any of the CaVβ subunit GK domains alone
- …
