Cool debris discs are a relic of the planetesimal formation process around
their host star, analogous to the solar system's Edgeworth-Kuiper belt. As
such, they can be used as a proxy to probe the origin and formation of
planetary systems like our own. The Herschel Open Time Key Programmes "DUst
around NEarby Stars" (DUNES) and "Disc Emission via a Bias-free Reconnaissance
in the Infrared/Submillimetre" (DEBRIS) observed many nearby, sun-like stars at
far-infrared wavelengths seeking to detect and characterize the emission from
their circumstellar dust. Excess emission attributable to the presence of dust
was identified from around ∼ 20% of stars. Herschel's high angular
resolution (∼ 7" FWHM at 100 μm) provided the capacity for resolving
debris belts around nearby stars with radial extents comparable to the solar
system (50 to 100 au). As part of the DUNES and DEBRIS surveys, we obtained
observations of three debris disc stars, HIP 22263 (HD 30495), HIP 62207 (HD
110897), and HIP 72848 (HD 131511), at far-infrared wavelengths with the
Herschel PACS instrument. Combining these new images and photometry with
ancilliary data from the literature, we undertook simultaneous multi-wavelength
modelling of the discs' radial profiles and spectral energy distributions using
three different methodologies: single annulus, modified black body, and a
radiative transfer code. We present the first far-infrared spatially resolved
images of these discs and new single-component debris disc models. We
characterize the capacity of the models to reproduce the disc parameters based
on marginally resolved emission through analysis of two sets of simulated
systems (based on the HIP 22263 and HIP 62207 data) with the noise levels
typical of the Herschel images. We find that the input parameter values are
recovered well at noise levels attained in the observations presented here.Comment: 13 pages, 5 figures, 5 tables, accepted for publication in A&