75 research outputs found
Squared visibility estimator. Calibrating biases to reach very high dynamic range
In the near infrared where detectors are limited by read-out noise, most
interferometers have been operated in wide band in order to benefit from larger
photon rates. We analyze in this paper the biases caused by instrumental and
turbulent effects to estimators for both narrow and wide band cases.
Visibilities are estimated from samples of the interferogram using two
different estimators, which is the classical sum of the squared
modulus of Fourier components and a new estimator for which complex
Fourier components are summed prior to taking the square. We present an
approach for systematically evaluating the performance and limits of each
estimator, and to optimizing observing parameters for each. We include the
effects of spectral bandwidth, chromatic dispersion, scan length, and
differential piston. We also establish the expression of the Signal-to-Noise
Ratio of the two estimators with respect to detector and photon noise. The
estimator is insensitive to dispersion and is always more sensitive
than the estimator. However, the latter allows to reach better
accuracies when detection is differential piston noise limited. Biases and
noise directly impact the dynamic range of reconstructed images. Very high
dynamic ranges are required for direct exoplanet detection by interferometric
techniques thus requiring estimators to be bias-free or biases to be accurately
calibrated. We discuss which estimator and which conditions are optimum for
astronomical applications especially when high accuracy visibilities are
required. We show that there is no theoretical limit to measuring visibilities
with accuracies as good as which is important in the prospect of
detecting faint exoplanets with interferometers.Comment: 23 pages, 6 figures, accepted for publication in Ap
Neurons Controlling Voluntary Vocalization in the Macaque Ventral Premotor Cortex
The voluntary control of phonation is a crucial achievement in the evolution of speech. In humans, ventral premotor cortex (PMv) and Broca's area are known to be involved in voluntary phonation. In contrast, no neurophysiological data are available about the role of the oro-facial sector of nonhuman primates PMv in this function. In order to address this issue, we recorded PMv neurons from two monkeys trained to emit coo-calls. Results showed that a population of motor neurons specifically fire during vocalization. About two thirds of them discharged before sound onset, while the remaining were time-locked with it. The response of vocalization-selective neurons was present only during conditioned (voluntary) but not spontaneous (emotional) sound emission. These data suggest that the control of vocal production exerted by PMv neurons constitutes a newly emerging property in the monkey lineage, shedding light on the evolution of phonation-based communication from a nonhuman primate species
Children with facial paralysis due to Moebius syndrome exhibit reduced autonomic modulation during emotion processing
Background: Facial mimicry is crucial in the recognition of others' emotional state. Thus, the observation of others' facial expressions activates the same neural representation of that affective state in the observer, along with related autonomic and somatic responses. What happens, therefore, when someone cannot mimic others' facial expressions? Methods: We investigated whether psychophysiological emotional responses to others' facial expressions were impaired in 13 children (9 years) with Moebius syndrome (MBS), an extremely rare neurological disorder (1/250,000 live births) characterized by congenital facial paralysis. We inspected autonomic responses and vagal regulation through facial cutaneous thermal variations and by the computation of respiratory sinus arrhythmia (RSA). These parameters provide measures of emotional arousal and show the autonomic adaptation to others' social cues. Physiological responses in children with MBS were recorded during dynamic facial expression observation and were compared to those of a control group (16 non-affected children, 9 years). Results: There were significant group effects on thermal patterns and RSA, with lower values in children with MBS. We also observed a mild deficit in emotion recognition in these patients. Conclusion: Results support "embodied" theory, whereby the congenital inability to produce facial expressions induces alterations in the processing of facial expression of emotions. Such alterations may constitute a risk for emotion dysregulation
The JCMT Gould Belt Survey: Evidence for radiative heating in Serpens MWC 297 and its influence on local star formation
We present SCUBA-2 450micron and 850micron observations of the Serpens MWC
297 region, part of the JCMT Gould Belt Survey of nearby star-forming regions.
Simulations suggest that radiative feedback influences the star-formation
process and we investigate observational evidence for this by constructing
temperature maps. Maps are derived from the ratio of SCUBA-2 fluxes and a two
component model of the JCMT beam for a fixed dust opacity spectral index of
beta = 1.8. Within 40 of the B1.5Ve Herbig star MWC 297, the submillimetre
fluxes are contaminated by free-free emission with a spectral index of
1.03+-0.02, consistent with an ultra-compact HII region and polar winds/jets.
Contamination accounts for 73+-5 per cent and 82+-4 per cent of peak flux at
450micron and 850micron respectively. The residual thermal disk of the star is
almost undetectable at these wavelengths. Young Stellar Objects are confirmed
where SCUBA-2 850micron clumps identified by the fellwalker algorithm coincide
with Spitzer Gould Belt Survey detections. We identify 23 objects and use Tbol
to classify nine YSOs with masses 0.09 to 5.1 Msun. We find two Class 0, one
Class 0/I, three Class I and three Class II sources. The mean temperature is
15+-2K for the nine YSOs and 32+-4K for the 14 starless clumps. We observe a
starless clump with an abnormally high mean temperature of 46+-2K and conclude
that it is radiatively heated by the star MWC 297. Jeans stability provides
evidence that radiative heating by the star MWC 297 may be suppressing clump
collapse.Comment: 24 pages, 13 figures, 7 table
JCMT POL-2 and BISTRO Survey Observations of Magnetic Fields in the L1689 Molecular Cloud
We present 850 μm polarization observations of the L1689 molecular cloud, part of the nearby Ophiuchus molecular cloud complex, taken with the POL-2 polarimeter on the James Clerk Maxwell Telescope (JCMT). We observe three regions of L1689: the clump L1689N which houses the IRAS 16293-2433 protostellar system, the starless clump SMM-16, and the starless core L1689B. We use the Davis–Chandrasekhar–Fermi method to estimate plane-of-sky field strengths of 366 ± 55 μG in L1689N, 284 ± 34 μG in SMM-16, and 72 ± 33 μG in L1689B, for our fiducial value of dust opacity. These values indicate that all three regions are likely to be magnetically transcritical with sub-Alfvénic turbulence. In all three regions, the inferred mean magnetic field direction is approximately perpendicular to the local filament direction identified in Herschel Space Telescope observations. The core-scale field morphologies for L1689N and L1689B are consistent with the cloud-scale field morphology measured by the Planck Space Observatory, suggesting that material can flow freely from large to small scales for these sources. Based on these magnetic field measurements, we posit that accretion from the cloud onto L1689N and L1689B may be magnetically regulated. However, in SMM-16, the clump-scale field is nearly perpendicular to the field seen on cloud scales by Planck, suggesting that it may be unable to efficiently accrete further material from its surroundings
The JCMT BISTRO-2 Survey: The Magnetic Field in the Center of the Rosette Molecular Cloud
We present the first 850 μm polarization observations in the most active star-forming site of the Rosette Molecular Cloud (d ~ 1.6 kpc) in the wall of the Rosette Nebula, imaged with the SCUBA-2/POL-2 instruments of the James Clerk Maxwell telescope, as part of the B-Fields In Star-forming Region Observations 2 (BISTRO-2) survey. From the POL-2 data we find that the polarization fraction decreases with the 850 μm continuum intensity with α = 0.49 ± 0.08 in the p ∝ I−α relation, which suggests that some fraction of the dust grains remain aligned at high densities. The north of our 850 μm image reveals a "gemstone ring" morphology, which is a ~1 pc diameter ring-like structure with extended emission in the "head" to the southwest. We hypothesize that it might have been blown by feedback in its interior, while the B-field is parallel to its circumference in most places. In the south of our SCUBA-2 field the clumps are apparently connected with filaments that follow infrared dark clouds. Here, the POL-2 magnetic field orientations appear bimodal with respect to the large-scale Planck field. The mass of our effective mapped area is ~174 M⊙, which we calculate from 850 μm flux densities. We compare our results with masses from large-scale emission-subtracted Herschel 250 μm data and find agreement within 30%. We estimate the plane-of-sky B-field strength in one typical subregion using the Davis–Chandrasekhar–Fermi technique and find 80 ± 30 μG toward a clump and its outskirts. The estimated mass-to-flux ratio of λ = 2.3 ± 1.0 suggests that the B-field is not sufficiently strong to prevent gravitational collapse in this subregion
DARWIN - A Mission to Detect, and Search for Life on, Extrasolar Planets
The discovery of extra-solar planets is one of the greatest achievements of
modern astronomy. The detection of planets with a wide range of masses
demonstrates that extra-solar planets of low mass exist. In this paper we
describe a mission, called Darwin, whose primary goal is the search for, and
characterization of, terrestrial extrasolar planets and the search for life.
Accomplishing the mission objectives will require collaborative science across
disciplines including astrophysics, planetary sciences, chemistry and
microbiology. Darwin is designed to detect and perform spectroscopic analysis
of rocky planets similar to the Earth at mid-infrared wavelengths (6 - 20
micron), where an advantageous contrast ratio between star and planet occurs.
The baseline mission lasts 5 years and consists of approximately 200 individual
target stars. Among these, 25 to 50 planetary systems can be studied
spectroscopically, searching for gases such as CO2, H2O, CH4 and O3. Many of
the key technologies required for the construction of Darwin have already been
demonstrated and the remainder are estimated to be mature in the near future.
Darwin is a mission that will ignite intense interest in both the research
community and the wider public
Direct discovery of the inner exoplanet in the HD 206893 system : Evidence for deuterium burning in a planetary-mass companion
Aims.
HD 206893 is a nearby debris disk star that hosts a previously identified brown dwarf companion with an orbital separation of ∼10 au. Long-term precise radial velocity (RV) monitoring, as well as anomalies in the system proper motion, has suggested the presence of an additional, inner companion in the system.
Methods.
Using information from ongoing precision RV measurements with the HARPS spectrograph, as well as Gaia host star astrometry, we have undertaken a multi-epoch search for the purported additional planet using the VLTI/GRAVITY instrument.
Results.
We report a high-significance detection over three epochs of the companion HD 206893c, which shows clear evidence for Keplerian orbital motion. Our astrometry with ∼50−100 μarcsec precision afforded by GRAVITY allows us to derive a dynamical mass of 12.7MJup and an orbital separation of 3.53 au for HD 206893c. Our fits to the orbits of both companions in the system use both Gaia astrometry and RVs to also provide a precise dynamical estimate of the previously uncertain mass of the B component, and therefore allow us to derive an age of 155 ± 15 Myr for the system. We find that theoretical atmospheric and evolutionary models that incorporate deuterium burning for HD 206893c, parameterized by cloudy atmosphere models as well as a “hybrid sequence” (encompassing a transition from cloudy to cloud-free), provide a good simultaneous fit to the luminosity of both HD 206893B and c. Thus, accounting for both deuterium burning and clouds is crucial to understanding the luminosity evolution of HD 206893c.
Conclusions.
In addition to using long-term RV information, this effort is an early example of a direct imaging discovery of a bona fide exoplanet that was guided in part by Gaia astrometry. Utilizing Gaia astrometry is expected to be one of the primary techniques going forward for identifying and characterizing additional directly imaged planets. In addition, HD 206893c is an example of an object narrowly straddling the deuterium-burning limit but unambiguously undergoing deuterium burning. Additional discoveries like this may therefore help clarify the discrimination between a brown dwarf and an extrasolar planet. Lastly, this discovery is another example of the power of optical interferometry to directly detect and characterize extrasolar planets where they form, at ice-line orbital separations of 2−4 au
The JCMT BISTRO Survey: Alignment between Outflows and Magnetic Fields in Dense Cores/Clumps
We compare the directions of molecular outflows of 62 low-mass Class 0 and I protostars in nearby (<450 pc) star-forming regions with the mean orientations of the magnetic fields on 0.05–0.5 pc scales in the dense cores/clumps where they are embedded. The magnetic field orientations were measured using the JCMT POL-2 data taken by the BISTRO-1 survey and from the archive. The outflow directions were observed with interferometers in the literature. The observed distribution of the angles between the outflows and the magnetic fields peaks between 15° and 35°. After considering projection effects, our results could suggest that the outflows tend to be misaligned with the magnetic fields by 50° ± 15° in three-dimensional space and are less likely (but not ruled out) randomly oriented with respect to the magnetic fields. There is no correlation between the misalignment and the bolometric temperatures in our sample. In several sources, the small-scale (1000–3000 au) magnetic field is more misaligned with the outflow than the large-scale magnetic field, suggesting that the small-scale magnetic field has been twisted by the dynamics. In comparison with turbulent MHD simulations of core formation, our observational results are more consistent with models in which the energy densities in the magnetic field and the turbulence of the gas are comparable. Our results also suggest that the misalignment alone cannot sufficiently reduce the efficiency of magnetic braking to enable formation of the observed number of large Keplerian disks with sizes larger than 30–50 au
High-resolution imaging of dust shells using Keck aperture masking and the IOTA Interferometer
We present first results of an experiment to combine data from Keck aperture
masking and the Infrared-Optical Telescope Array (IOTA) to image the
circumstellar environments of evolved stars with ~20 milliarcsecond resolution.
The unique combination of excellent Fourier coverage at short baselines and
high-quality long-baseline fringe data allows us to determine the location and
clumpiness of the inner-most hot dust in the envelopes, and to measure the
diameters of the underlying stars themselves. We find evidence for large-scale
inhomogeneities in some dust shells and also significant deviations from
uniform brightness for the photospheres of the most evolved M-stars. Deviations
from spherically-symmetric mass loss in the red supergiant NML Cyg could be
related to recent evidence for dynamically-important magnetic fields and/or
stellar rotation. We point out that dust shell asymmetries, like those observed
here, can qualitatively explain the difficulty recent workers have had in
simultaneously fitting the broad-band spectral energy distributions and
high-resolution spatial information, without invoking unusual dust properties
or multiple distinct shells (from hypothetical ``superwinds''). This paper is
the first to combine optical interferometry data from multiple facilities for
imaging, and we discuss the challenges and potential for the future of this
method, given current calibration and software limitations.Comment: To appear in ApJ (61 pages: 4 tables, 23 figures). Image resolution
degrade
- …