858 research outputs found

    Cloud feedback mechanisms and their representation in global climate models

    Get PDF
    Cloud feedback—the change in top‐of‐atmosphere radiative flux resulting from the cloud response to warming—constitutes by far the largest source of uncertainty in the climate response to CO2 forcing simulated by global climate models (GCMs). We review the main mechanisms for cloud feedbacks, and discuss their representation in climate models and the sources of intermodel spread. Global‐mean cloud feedback in GCMs results from three main effects: (1) rising free‐tropospheric clouds (a positive longwave effect); (2) decreasing tropical low cloud amount (a positive shortwave [SW] effect); (3) increasing high‐latitude low cloud optical depth (a negative SW effect). These cloud responses simulated by GCMs are qualitatively supported by theory, high‐resolution modeling, and observations. Rising high clouds are consistent with the fixed anvil temperature (FAT) hypothesis, whereby enhanced upper‐tropospheric radiative cooling causes anvil cloud tops to remain at a nearly fixed temperature as the atmosphere warms. Tropical low cloud amount decreases are driven by a delicate balance between the effects of vertical turbulent fluxes, radiative cooling, large‐scale subsidence, and lower‐tropospheric stability on the boundary‐layer moisture budget. High‐latitude low cloud optical depth increases are dominated by phase changes in mixed‐phase clouds. The causes of intermodel spread in cloud feedback are discussed, focusing particularly on the role of unresolved parameterized processes such as cloud microphysics, turbulence, and convection

    Factors predictive of lymph node metastasis in the follicular variant of papillary thyroid carcinoma

    Get PDF
    BACKGROUND: The treatment of papillary thyroid carcinomas larger than 1 cm usually consists of total thyroidectomy and central lymph node dissection (LND). In patients with the follicular variant of papillary thyroid carcinoma (FVPTC), preoperative cytology and intraoperative frozen-section analysis cannot always establish the diagnosis. The aim of this study was to evaluate predictive factors for lymph node metastasis in patients with FVPTC and to identify patients who might benefit from LND. METHODS: The study included patients with FVPTC treated by total thyroidectomy and LND between 2000 and 2010 in four departments. When fewer than six non-involved lymph nodes were removed, the patient was excluded from the analysis. RESULTS: Some 199 patients were included. The median tumour size was 17 (range 1-85) mm, and tumours were classified as T1a in 28 patients, T1b in 40, T2 in 53, and T3 in 78. Eighty-one patients (40·7 per cent) had lymph node metastasis (51 classified as N1a and 30 as N1b). Four risk factors were predictive of lymph node metastasis in the multivariable analysis: multifocality (odds ratio (OR) 2·36, 95 per cent confidence interval 1·15 to 4·86), angiolymphatic invasion (OR 3·67, 1·01 to 13·36), absence of tumour capsule (OR 3·00, 1·47 to 6·14) and tumour involvement of perithyroid tissue (OR 3·89, 1·85 to 8·18). The rate of lymph node metastasis varied between 14 and 94 per cent depending on the presence of risk factors. CONCLUSION: The rate of lymph node metastasis in patients with FVPTC varies widely according to the presence or absence of predictive risk factors

    MICROMEGAS chambers for hadronic calorimetry at a future linear collider

    Full text link
    Prototypes of MICROMEGAS chambers, using bulk technology and analog readout, with 1x1cm2 readout segmentation have been built and tested. Measurements in Ar/iC4H10 (95/5) and Ar/CO2 (80/20) are reported. The dependency of the prototypes gas gain versus pressure, gas temperature and amplification gap thickness variations has been measured with an 55Fe source and a method for temperature and pressure correction of data is presented. A stack of four chambers has been tested in 200GeV/c and 7GeV/c muon and pion beams respectively. Measurements of response uniformity, detection efficiency and hit multiplicity are reported. A bulk MICROMEGAS prototype with embedded digital readout electronics has been assembled and tested. The chamber layout and first results are presented

    Testing the Higgs Mechanism in the Lepton Sector with multi-TeV e+e- Collisions

    Full text link
    Multi-TeV e+e- collisions provide with a large enough sample of Higgs bosons to enable measurements of its suppressed decays. Results of a detailed study of the determination of the muon Yukawa coupling at 3 TeV, based on full detector simulation and event reconstruction, are presented. The muon Yukawa coupling can be determined with a relative accuracy of 0.04 to 0.08 for Higgs bosons masses from 120 GeV to 150 GeV, with an integrated luminosity of 5 inverse-ab. The result is not affected by overlapping two-photon background.Comment: 6 pages, 2 figures, submitted to J Phys G.: Nucl. Phy

    First test of a power-pulsed electronics system on a GRPC detector in a 3-Tesla magnetic field

    Full text link
    An important technological step towards the realization of an ultra-granular hadronic calorimeter to be used in the future International Linear Collider (ILC) experiments has been made. A 33X50 cm2 GRPC detector equipped with a power-pulsed electronics board offering a 1cm2 lateral segmentation was successfully tested in a 3-Tesla magnet operating at the H2 beam line of the CERN SPS. An important reduction of power consumption with no deterioration of the detector performance is obtained when the power-pulsing mode is applied. This important result shows that ultra-granular calorimeters for ILC experiments are not only an attractive but also a realistic option.Comment: 10 pages, 9 figure

    Toward High Precision Higgs-Boson Measurements at the International Linear e+e- Collider

    Get PDF
    This report reviews the properties of Higgs bosons in the Standard Model (SM) and its various extensions. We give an extensive overview about the potential of the ILC operated at centre-of-mass energies up to 1 TeV (including the gamma gamma option) for the determination of the Higgs boson properties. This comprises the measurement of the Higgs boson mass, its couplings to SM fermions and gauge bosons, and the determination of the spin and the CP quantum numbers of the Higgs. The extensions of the SM that are analyzed in more detail are heavy SM-like Higgs bosons, heavy Higgs bosons in the framework of Supersymmetry (SUSY) and further exotic scenarios. We review recent theoretical developments in the field of Higgs boson physics. The important question what the ILC can contribute to Higgs boson physics after the LHC, the LHC/ILC interplay and synergy is discussed. The impact of Higgs boson physics on cosmology in several SUSY frameworks is analyzed. The impact of the accelerator and dector performance on the precision of measurements are discussed in detail. We propose a strategy to optimize future analyses. Open questions arising for the various topics are listed, further topics of study and corresponding roadmaps are suggested.Comment: 128 pages, lots of figures. One subsection added and other minor modification

    Performance of Glass Resistive Plate Chambers for a high granularity semi-digital calorimeter

    Full text link
    A new design of highly granular hadronic calorimeter using Glass Resistive Plate Chambers (GRPCs) with embedded electronics has been proposed for the future International Linear Collider (ILC) experiments. It features a 2-bit threshold semi-digital read-out. Several GRPC prototypes with their electronics have been successfully built and tested in pion beams. The design of these detectors is presented along with the test results on efficiency, pad multiplicity, stability and reproducibility.Comment: 16 pages, 15 figure
    corecore