1,039 research outputs found

    A hypercyclic finite rank perturbation of a unitary operator

    Full text link
    A unitary operator VV and a rank 22 operator RR acting on a Hilbert space \H are constructed such that V+RV+R is hypercyclic. This answers affirmatively a question of Salas whether a finite rank perturbation of a hyponormal operator can be supercyclic.Comment: published in Mathematische Annale

    Subspace hypercyclicity

    Get PDF
    A bounded linear operator T on Hilbert space is subspace-hypercyclic for a subspace M if there exists a vector whose orbit under T intersects the subspace in a relatively dense set. We construct examples to show that subspace-hypercyclicity is interesting, including a nontrivial subspace-hypercyclic operator that is not hypercyclic. There is a Kitai-like criterion that implies subspace-hypercyclicity and although the spectrum of a subspace-hypercyclic operator must intersect the unit circle, not every component of the spectrum will do so. We show that, like hypercyclicity, subspace-hypercyclicity is a strictly infinite-dimensional phenomenon. Additionally, compact or hyponormal operators can never be subspace-hypercyclic.Comment: 15 page

    Conformal dimension and random groups

    Full text link
    We give a lower and an upper bound for the conformal dimension of the boundaries of certain small cancellation groups. We apply these bounds to the few relator and density models for random groups. This gives generic bounds of the following form, where ll is the relator length, going to infinity. (a) 1 + 1/C < \Cdim(\bdry G) < C l / \log(l), for the few relator model, and (b) 1 + l / (C\log(l)) < \Cdim(\bdry G) < C l, for the density model, at densities d<1/16d < 1/16. In particular, for the density model at densities d<1/16d < 1/16, as the relator length ll goes to infinity, the random groups will pass through infinitely many different quasi-isometry classes.Comment: 32 pages, 4 figures. v2: Final version. Main result improved to density < 1/16. Many minor improvements. To appear in GAF

    Variability of serum markers of erythropoiesis during 6 days of racing in highly trained cyclists

    Get PDF
    The athlete biological passport for the fight against doping is currently based on longitudinal monitoring for abnormal changes in cellular blood parameters. Serum parameters related to altered erythropoiesis could be considered for inclusion in the passport. The aim of this study was to quantify the changes in such parameters in athletes during a period of intense exercise. 12 highly trained cyclists tapered for 3 days before 6 days of simulated intense stage racing. Morning and afternoon blood samples were taken on most days and analysed for total protein, albumin, soluble transferrin receptor and ferritin concentrations. Plasma volume was determined via total haemoglobin mass measured by carbon-monoxide rebreathing. Percent changes in means from baseline and percent standard errors of measurement (analytical error plus intra-athlete variation) on each measurement occasion were estimated with mixed linear modelling of log-transformed measures. Means of all variables changed substantially in the days following the onset of racing, ranging from −13% (haemoglobin concentration) to +27% (ferritin). After the second day, errors of measurement were generally twice those at baseline. Plasma variables were affected by heavy exercise, either because of changes in plasma volume (total protein, albumin, haemoglobin), acute phase/inflammatory reactions (ferritin) or both (soluble transferrin receptor). These effects need to be taken into consideration when integrating a plasma parameter into the biological passport model for athletes

    τρππν\tau\to\rho\pi\pi\nu decays

    Full text link
    Effective chiral theory of mesons is applied to study the four decay modes of τρππν\tau\to\rho\pi\pi\nu. Theoretical values of the branching ratios are in agreement with the data. The theory predicts that the a1a_{1} resonance plays a dominant role in these decays. There is no new parameter in this study.Comment: 12 pages and one figur

    Monoclonal antibodies against human astrocytomas and their reactivity pattern

    Get PDF
    The establishment of hybridomas after fusion of X63-Ag8.653 mouse myeloma cells and splenocytes from mice hyperimmunized against human astrocytomas is presented. The animals were primed with 5 × 106 chemically modified uncultured or cultured glioma cells. Six weeks after the last immunization step an intrasplenal booster injection was administrated and 3 days later the spleen cells were prepared for fusion experiments. According to the specificity analysis of the generated antibodies 7 hybridoma products (MUC 7-22, MUC 8-22, MUC 10-22, MUC 11-22, MUC 14-22, MUC 15-22 and MUC 2-63) react with gliomas, neuroblastomas and melanomas as well as with embryonic and fetal cells but do not recognize non-neurogenic tumors. The selected monoclonal antibodies (McAbs) of IgG1 and IgG2a isotypes are not extensively characterized but these antibodies have been demonstrated to be reactive with a panel of glioma cell lines with varying patterns of antigen distribution. Using the McAbs described above and a series of cryosections of glioma biopsies and paraffin sections of the same material as well as glioma cultures established from these, variable antigenic profiles among glioma cell populations could be demonstrated. From these results it is evident that there is not only a distinct degree of antigenic heterogeneity among and within brain tumors, but also that the pattern of antigenic expression can change continuously. Some of the glioma associated antigens recognized by the selected antibodies persist after fixation with methanol/acetone and Karnovsky's fixative and probably are oncoembryonic/oncofetal antigen(s). The data suggest that the use of McAbs recognizing tumor associated oncofetal antigens in immunohistochemistry facilitates objective typing of intracranial malignancies and precise analysis of fine needle brain/tumor biopsies in a sensitive and reproducible manner

    Southern Ocean control of silicon stable isotope distribution in the deep Atlantic Ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Geochemical Cycles 26 (2012): GB2035, doi:10.1029/2011GB004141.The fractionation of silicon (Si) stable isotopes by biological activity in the surface ocean makes the stable isotope composition of silicon (δ30Si) dissolved in seawater a sensitive tracer of the oceanic biogeochemical Si cycle. We present a high-precision dataset that characterizes the δ30Si distribution in the deep Atlantic Ocean from Denmark Strait to Drake Passage, documenting strong meridional and smaller, but resolvable, vertical δ30Si gradients. We show that these gradients are related to the two sources of deep and bottom waters in the Atlantic Ocean: waters of North Atlantic and Nordic origin carry a high δ30Si signature of ≥+1.7‰ into the deep Atlantic, while Antarctic Bottom Water transports Si with a low δ30Si value of around +1.2‰. The deep Atlantic δ30Si distribution is thus governed by the quasi-conservative mixing of Si from these two isotopically distinct sources. This disparity in Si isotope composition between the North Atlantic and Southern Ocean is in marked contrast to the homogeneity of the stable nitrogen isotope composition of deep ocean nitrate (δ15N-NO3). We infer that the meridional δ30Si gradient derives from the transport of the high δ30Si signature of Southern Ocean intermediate/mode waters into the North Atlantic by the upper return path of the meridional overturning circulation (MOC). The basin-scale deep Atlantic δ30Si gradient thus owes its existence to the interaction of the physical circulation with biological nutrient uptake at high southern latitudes, which fractionates Si isotopes between the abyssal and intermediate/mode waters formed in the Southern Ocean.This work was supported by Swiss National Science Foundation grants 200021-116473 and 200020-130361.2012-12-1

    Quantifying loopy network architectures

    Get PDF
    Biology presents many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture containing closed loops at many different levels. Although a number of methods have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework, the hierarchical loop decomposition, that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated graphs, such as artificial models and optimal distribution networks, as well as natural graphs extracted from digitized images of dicotyledonous leaves and vasculature of rat cerebral neocortex. We calculate various metrics based on the Asymmetry, the cumulative size distribution and the Strahler bifurcation ratios of the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information (exact location of edges and nodes) from the metric topology (connectivity and edge weight) and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs.Comment: 17 pages, 8 figures. During preparation of this manuscript the authors became aware of the work of Mileyko at al., concurrently submitted for publicatio
    corecore