33 research outputs found
Navigating through digital folders uses the same brain structures as real world navigation
Efficient storage and retrieval of digital data is the focus of much commercial and academic attention. With personal computers, there are two main ways to retrieve files: hierarchical navigation and query-based search. In navigation, users move down their virtual folder hierarchy until they reach the folder in which the target item is stored. When searching, users first generate a query specifying some property of the target file (e.g., a word it contains), and then select the relevant file when the search engine returns a set of results. Despite advances in search technology, users prefer retrieving files using virtual folder navigation, rather than the more flexible query-based search. Using fMRI we provide an explanation for this phenomenon by demonstrating that folder navigation results in activation of the posterior limbic (including the retrosplenial cortex) and parahippocampal regions similar to that previously observed during real-world navigation in both animals and humans. In contrast, search activates the left inferior frontal gyrus, commonly observed in linguistic processing. We suggest that the preference for navigation may be due to the triggering of automatic object finding routines and lower dependence on linguistic processing. We conclude with suggestions for future computer systems design
Cortical functioning in children with developmental coordination disorder:a motor overflow study
This study examined brain activation in children with developmental coordination disorder (DCD) to reveal areas that may contribute to poor movement execution and/or abundant motor overflow. Using functional magnetic resonance imaging, 13 boys with DCD (mean age = 9.6 years ±0.8) and 13 typically developing controls (mean age = 9.3 years ±0.6) were scanned performing two tasks (finger sequencing and hand clenching) with their dominant hand, while a four-finger motion sensor recorded contralateral motor overflow on their non-dominant hand. Despite displaying increased motor overflow on both functional tasks during scanning, there were no obvious activation deficits in the DCD group to explain the abundant motor overflow seen. However, children with DCD were found to display decreased activation in the left superior frontal gyrus on the finger-sequencing task, an area which plays an integral role in executive and spatially oriented processing. Decreased activation was also seen in the left inferior frontal gyrus, an area typically active during the observation and imitation of hand movements. Finally, increased activation in the right postcentral gyrus was seen in children with DCD, which may reflect increased reliance on somatosensory information during the execution of complex fine motor tasks
Central Nervous System Changes in Pediatric Heart Failure: A Volumetric Study
Autonomic dysfunction, mood disturbances, and memory deficits appear in pediatric and adult heart failure (HF). Brain areas controlling these functions show injury in adult HF patients, many of whom have comorbid cerebrovascular disease. We examined whether similar brain pathology develops in pediatric subjects without such comorbidities. In this study, high-resolution T1 brain magnetic resonance images were collected from seven severe HF subjects age (age 8–18 years [mean 13]; left ventricular shortening 9 to 19% [median 14%]) and seven age-matched healthy controls (age 8–18 years [mean 13]). After segmentation into gray matter (GM), white matter, and cerebrospinal fluid (CSF), regional volume loss between groups was determined by voxel-based morphometry. GM volume loss appeared on all HF scans, but ischemic changes and infarcts were absent. HF subjects showed greater CSF volume than controls (mean ± SD 0.30 ± 0.04 vs. 0.25 ± 0.04 l, P = 0.03), but total intracranial volume was identical (1.39 ± 0.11 vs. 1.39 ± 0.09 l, P = NS). Regional GM volume reduction appeared in the right and left posterior hippocampus, bilateral mid-insulae, and the superior medial frontal gyrus and mid-cingulate cortex of HF subjects (threshold P < 0.001). No volume-loss sites appeared in control brains. We conclude that pediatric HF patients show brain GM loss in areas similar to those of adult HF subjects. Substantial changes emerged in sites that regulate autonomic function as well as mood, personality and short-term memory. In the absence of thromboembolic disease and many comorbid conditions found in adult HF patients, pediatric HF patients show significant, focal GM volume loss, which may coincide with the multiple neurologic and psychological changes observed in patients with HF
Neural substrates of incongruity-resolution and nonsense humor
By means of functional magnetic resonance imaging the present paper analyzes the neural correlates of processing and appreciating incongruity-resolution and nonsense cartoons. Furthermore, the relation between experience seeking and these neural substrates was investigated as this personality characteristic is known to influence humor appreciation. In the processing of incongruity-resolution stimuli the incongruity of the joke is largely resolvable, whereas in nonsense stimuli it is only partially resolvable and more incongruity remains. The anterior medial prefrontal cortex, bilateral superior frontal gyri and temporo-parietal junctions (TPJ) show more activation during processing of incongruity-resolution than of nonsense cartoons. These differences indicate that processing of incongruity-resolution cartoons requires more integration of multi-sensory information and coherence building, as well as more mental manipulation and organization of information. In addition, less self-reference might be established in nonsense cartoons as it is more absurd and more often deals with impossible situations. Higher experience-seeking scores correlate with increased activation in prefrontal, posterior temporal regions and the hippocampus. This might be due to a more intense exploration of the humorous stimuli as experience seekers tend to search novel mental stimulation. Furthermore, experience seeking was positively associated with brain reactivity towards processing nonsense in contrast to incongruity-resolution stimuli, which is in line with behavioral studies that showed a preference for nonsense humor by experience seekers
Distinct patterns of brain activity characterise lexical activation and competition in spoken word production
Contains fulltext :
126491.pdf (publisher's version ) (Open Access)According to a prominent theory of language production, concepts activate multiple associated words in memory, which enter into competition for selection. However, only a few electrophysiological studies have identified brain responses reflecting competition. Here, we report a magnetoencephalography study in which the activation of competing words was manipulated by presenting pictures (e.g., dog) with distractor words. The distractor and picture name were semantically related (cat), unrelated (pin), or identical (dog). Related distractors are stronger competitors to the picture name because they receive additional activation from the picture relative to other distractors. Picture naming times were longer with related than unrelated and identical distractors. Phase-locked and non-phase-locked activity were distinct but temporally related. Phase-locked activity in left temporal cortex, peaking at 400 ms, was larger on unrelated than related and identical trials, suggesting differential activation of alternative words by the picture-word stimuli. Non-phase-locked activity between roughly 350-650 ms (4-10 Hz) in left superior frontal gyrus was larger on related than unrelated and identical trials, suggesting differential resolution of the competition among the alternatives, as reflected in the naming times. These findings characterise distinct patterns of activity associated with lexical activation and competition, supporting the theory that words are selected by competition.11 p