9 research outputs found

    Reasoning with uncertain points, straight lines, and straight line segments

    Get PDF
    Decisions based on basic geometric entities can only be optimal, if their uncertainty is propagated trough the entire reasoning chain. This concerns the construction of new entities from given ones, the testing of geometric relations between geometric entities, and the parameter estimation of geometric entities based on spatial relations which have been found to hold. Basic feature extraction procedures often provide measures of uncertainty. These uncertainties should be incorporated into the representation of geometric entities permitting statistical testing, eliminates the necessity of specifying non-interpretable thresholds and enables statistically optimal parameter estimation. Using the calculus of homogeneous coordinates the power of algebraic projective geometry can be exploited in these steps of image analysis. This review collects, discusses and evaluates the various representations of uncertain Preprint submitted to Elsevier 23 July 2009geometric entities in 2D together with their conversions. The representations are extended to achieve a consistent set of representations allowing geometric reasoning. The statistical testing of geometric relations is presented. Furthermore, a generic estimation procedure is provided for multiple uncertain geometric entities based on possibly correlated observed geometric entities and geometric constraints. Key words: spatial reasoning, uncertainty, homogeneous coordinates, geometric entitie

    Comparison of Scanning LiDAR with Other Remote Sensing Measurements and Transport Model Predictions for a Saharan Dust Case

    Get PDF
    The evolution and the properties of a Saharan dust plume were studied near the city of Karlsruhe in southwest Germany (8.4298°E, 49.0953°N) from 7 to 9 April 2018, combining a scanning LiDAR (90°, 30°), a vertically pointing LiDAR (90°), a sun photometer, and the transport model ICON-ART. Based on this Saharan dust case, we discuss the advantages of a scanning aerosol LiDAR and validate a method to determine LiDAR ratios independently. The LiDAR measurements at 355 nm showed that the dust particles had backscatter coefficients of 0.86 ± 0.14 Mm1^{-1} sr1^{-1}, extinction coefficients of 40 ± 0.8 Mm1^{-1}, a LiDAR ratio of 46 ± 5 sr, and a linear particle depolarisation ratio of 0.27 ± 0.023. These values are in good agreement with those obtained in previous studies of Saharan dust plumes in Western Europe. Compared to the remote sensing measurements, the transport model predicted the plume arrival time, its layer height, and its structure quite well. The comparison of dust plume backscatter values from the ICON-ART model and observations for two days showed a correlation with a slope of 0.9 ± 0.1 at 355 nm. This work will be useful for future studies to characterise aerosol particles employing scanning LiDARs

    Aerosol-cloud-radiation interaction during Saharan dust episodes: The dusty cirrus puzzle

    Get PDF
    Dusty cirrus clouds are extended optically thick cirrocumulus decks that occur during strong mineral dust events. So far they have been mostly documented over Europe associated with dust-infused baroclinic storms. Since today's numerical weather prediction models neither predict mineral dust distributions nor consider the interaction of dust with cloud microphysics, they cannot simulate this phenomenon. We postulate that the dusty cirrus forms through a mixing instability of moist clean air with drier dusty air. A corresponding sub-grid parameterization is suggested and tested in the ICON-ART model. Only with help of this parameterization ICON-ART is able to simulate the formation of the dusty cirrus, which leads to substantial improvements in cloud cover and radiative fluxes compared to simulations without this parameterization. A statistical evaluation over six Saharan dust events with and without observed dusty cirrus shows robust improvements in cloud and radiation scores. The ability to simulate dusty cirrus formation removes the linear dependency on mineral dust aerosol optical depth from the bias of the radiative fluxes. This suggests that the formation of dusty cirrus clouds is the dominant aerosol-cloud-radiation effect of mineral dust over Europe.</p

    NFDI4Microbiota – national research data infrastructure for microbiota research

    Get PDF
    Microbes – bacteria, archaea, unicellular eukaryotes, and viruses – play an important role in human and environmental health. Growing awareness of this fact has led to a huge increase in microbiological research and applications in a variety of fields. Driven by technological advances that allow high-throughput molecular characterization of microbial species and communities, microbiological research now offers unparalleled opportunities to address current and emerging needs. As well as helping to address global health threats such as antimicrobial resistance and viral pandemics, it also has a key role to play in areas such as agriculture, waste management, water treatment, ecosystems remediation, and the diagnosis, treatment and prevention of various diseases. Reflecting this broad potential, billions of euros have been invested in microbiota research programs worldwide. Though run independently, many of these projects are closely related. However, Germany currently has no infrastructure to connect such projects or even compare their results. Thus, the potential synergy of data and expertise is being squandered. The goal of the NFDI4Microbiota consortium is to serve and connect this broad and heterogeneous research community by elevating the availability and quality of research results through dedicated training, and by facilitating the generation, management, interpretation, sharing, and reuse of microbial data. In doing so, we will also foster interdisciplinary interactions between researchers. NFDI4Microbiota will achieve this by creating a German microbial research network through training and community-building activities, and by creating a cloud-based system that will make the storage, integration and analysis of microbial data, especially omics data, consistent, reproducible, and accessible across all areas of life sciences. In addition to increasing the quality of microbial research in Germany, our training program will support widespread and proper usage of these services. Through this dual emphasis on education and services, NFDI4Microbiota will ensure that microbial research in Germany is synergistic and efficient, and thus excellent. By creating a central resource for German microbial research, NDFDI4Microbiota will establish a connecting hub for all NFDI consortia that work with microbiological data, including GHGA, NFDI4Biodiversity, NFDI4Agri and several others. NFDI4Microbiota will provide non-microbial specialists from these consortia with direct and easy access to the necessary expertise and infrastructure in microbial research in order to facilitate their daily work and enhance their research. The links forged through NFDI4Microbiota will not only increase the synergy between NFDI consortia, but also elevate the overall quality and relevance of microbial research in Germany

    Utilizing the uncertainty of polyhedra for the reconstruction of buildings

    No full text
    The reconstruction of urban areas suffers from the dilemma of modeling urban structures in a generic or specific way, thus being too unspecific or too restrictive. One approach is to model and to instantiate buildings as arbitrarily shaped polyhedra and to recognize comprised man-made structures in a subsequent stage by geometric reasoning. To do so, we assume the existence of boundary representations for buildings with vertical walls and horizontal ground floors. To stay generic and to avoid the use of templates for pre-defined building primitives, no further assumptions for the buildings’ outlines and the planar roof areas are made. Typically, roof areas are derived interactively or in an automatic process based on given point clouds or digital surface models. Due to the mensuration process and the assumption of planar boundaries, these planar faces are uncertain. Thus, a stochastic geometric reasoning process with statistical testing is appropriate to detected man-made structures followed by an adjustment to enforce the deduced geometric constraints. Unfortunately, city models usually do not feature information about the uncertainty of geometric entities. We present an approach to specify the uncertainty of the planes corresponding to the planar patches, i.e., polygons bounding a building, analytically. This paves the way to conduct the reasoning process with just a few assumptions. We explicate and demonstrate the approach with real data

    Geometric reasoning with uncertain polygonal faces

    No full text
    The reconstruction of urban areas suffers from the dilemma of modeling urban structures in a generic or specific way, thus being too unspecific or too restrictive. One approach to overcome this dilemma is to model and to instantiate buildings as arbitrarily shaped polyhedra and to recognize man-made structures in a subsequent stage by geometric reasoning. Thus, the existence of unconstrained boundary representations for buildings is assumed. To stay generic and to avoid the use of templates for pre-defined building primitives, no assumptions for the buildings' outlines and the planar roof areas are made. Typically, roof areas are derived interactively or in an automatic process based on given point clouds or digital surface models. Due to the measurement process and the assumption of planar boundaries, these planar faces are uncertain. Thus, a stochastic geometric reasoning process with statistical testing is appropriate to detected man-made structures followed by an adjustment to enforce the deduced geometric constraints. Unfortunately, city models usually do not feature information about the uncertainty of geometric entities. We present an approach to specify the uncertainty of the planes corresponding to the planar patches, i.e., polygons bounding a building, analytically. This paves the way to conduct the reasoning process with just a few assumptions. We describe and demonstrate the approach with real data

    Exploring flow-biofilm-sediment interactions: Assessment of current status and future challenges

    No full text
    corecore