4,782 research outputs found

    Spin-Forster transfer in optically excited quantum dots

    Full text link
    The mechanisms of energy and spin transfer in quantum dot pairs coupled via the Coulomb interaction are studied. Exciton transfer can be resonant or phonon-assisted. In both cases, the transfer rates strongly depend on the resonance conditions. The spin selection rules in the transfer process come from the exchange and spin-orbit interactions. The character of energy dissipation in spin transfer is different than that in the traditional spin currents. The spin-dependent photon cross-correlation functions reflect the exciton transfer process. In addition, a mathematical method to calculate F\"orster transfer in crystalline nanostructures beyond the dipole-dipole approximation is described.Comment: 22 pages, 10 figures, Phys. Rev. B, in pres

    Forster signatures and qubits in optically driven quantum dot molecules

    Full text link
    An interesting approach to achieve quantum gate operations in a solid state device is to implement an optically driven quantum gate using two vertically coupled self-assembled quantum dots, a quantum dot molecule (QDM). We present a realistic model for exciton dynamics in InGaAs/GaAs QDMs under intense laser excitation and applied electric fields. The dynamics is obtained by solutions of the Lindblad master equation. A map of the dressed ground state as function of laser energy and applied electric field exhibits rich structure that includes excitonic anticrossings that permit the identification of the relevant couplings. The optical signatures of the dipole-dipole Forster energy transfer mechanism show as splittings of several (spatially) indirect excitonic lines. Moreover, we construct a model for exciton qubit rotations by adiabatic electric field cyclic sweeps into a Forster-tunneling regime which induces level anticrossings. The proposed qubit exhibits Rabi oscillations among two well defined exciton pairs as function of the residence time at the anticrossing.Comment: Paper presented in the International Conference on Electronic Properties of Two-dimensional Systems and Modulated Semiconductor Structures Genova Magazzini del Cotone, July 15-20 200

    Spin fluctuations with two-dimensional XY behavior in a frustrated S = 1/2 square-lattice ferromagnet

    Get PDF
    The spin dynamics of the layered square-lattice vanadate Pb2VO(PO4)2 is investigated by electron spin resonance at various magnetic fields and at temperatures above magnetic ordering. The linewidth divergence towards low temperatures seems to agree with isotropic Heisenberg-type spin exchange suggesting that the spin relaxation in this quasi-two dimensional compound is governed by low-dimensional quantum fluctuations. However, a weak easy- plane anisotropy of the g factor points to the presence of a planar XY type of exchange. Indeed, we found that the linewidth divergence is described best by XY-like spin fluctuations which requires a single parameter only. Therefore, ESR-probed spin dynamics could establish Pb2VO(PO4)2 as the first frustrated square lattice system with XY-inherent spin topological fluctuations.Comment: 5 pages, 3 figure

    Current-voltage correlations in interferometers

    Full text link
    We investigate correlations of current at contacts and voltage fluctuations at voltage probes coupled to interferometers. The results are compared with correlations of current and occupation number fluctuations at dephasing probes. We use a quantum Langevin approach for the average quantities and their fluctuations. For higher order correlations we develop a stochastic path integral approach and find the generating functions of voltage or occupation number fluctuations. We also derive a generating function for the joint distribution of voltage or occupation number at the probe and current fluctuations at a terminal of a conductor. For energy independent scattering we found earlier that the generating function of current cumulants in interferometers with a one-channel dephasing or voltage probe are identical. Nevertheless, the distribution function for voltage and the distribution function for occupation number fluctuations differ, the latter being broader than that of former in all examples considered here.Comment: 23 pages, 10 figures, minor changes, additional appendix, added reference

    Review of SIS Experimental Results on Strangeness

    Full text link
    >A review of meson emission in heavy ion collisions at incident energies around 1 -- 2 A⋅A\cdotGeV is presented. It is shown how the shape of the spectra and the various particle yields vary with system size, with centrality and with incident energy. A statistical model assuming thermal and chemical equilibrium and exact strangeness conservation (i.e. strangeness conservation per collision) explains most of the observed features. Emphasis is put onto the study of K+K^+ and K−K^- emission. In the framework of this statistical model it is shown that the experimentally observed equality of K+K^+ and K−K^- rates at threshold corrected energies s−sth\sqrt{s} - \sqrt{s_{th}} is due to a crossing of two excitation functions. Furthermore, the independence of the K+K^+ to K−K^- ratio on the number of participating nucleons observed between 1 and 10 A⋅A\cdotGeV is consistent with this model. The observed flow effects are beyond the scope of this model.Comment: 10 pages, 9 figures, Strangeness 2000, V International Conference on Strangeness in Quark Matter, July, 2000, Berkeley, Californi

    K+ and K- production in heavy-ion collisions at SIS-energies

    Full text link
    The production and the propagation of K+ and of K- mesons in heavy-ion collisions at beam energies of 1 to 2 AGeV have systematically been investigated with the Kaon Spectrometer KaoS at the SIS at the GSI. The ratio of the K+ production excitation function for Au+Au and for C+C reactions increases with decreasing beam energy, which is expected for a soft nuclear equation-of-state. At 1.5 AGeV a comprehensive study of the K+ and of the K- emission as a function of the size of the collision system, of the collision centrality, of the kaon energy, and of the polar emission angle has been performed. The K-/K+ ratio is found to be nearly constant as a function of the collision centrality. The spectral slopes and the polar emission patterns are different for K- and for K+. These observations indicate that K+ mesons decouple earlier from the reaction zone than K- mesons.Comment: invited talk given at the SQM2003 conference in Atlantic Beach, USA (March 2003), to be published in Journal of Physics G, 10pages, 7 figure

    Decrumpling membranes by quantum effects

    Full text link
    The phase diagram of an incompressible fluid membrane subject to quantum and thermal fluctuations is calculated exactly in a large number of dimensions of configuration space. At zero temperature, a crumpling transition is found at a critical bending rigidity 1/αc1/\alpha_{\rm c}. For membranes of fixed lateral size, a crumpling transition occurs at nonzero temperatures in an auxiliary mean field approximation. As the lateral size L of the membrane becomes large, the flat regime shrinks with 1/ln⁥L1/\ln L.Comment: 9 pages, 4 figure
    • 

    corecore