14 research outputs found

    Performance characterization and near-realtime monitoring of MUSE adaptive optics modes at Paranal

    Full text link
    The Multi Unit Spectroscopic Explorer (MUSE) is an integral field spectrograph on the Very Large Telescope Unit Telescope 4, capable of laser guide star assisted and tomographic adaptive optics using the GALACSI module. Its observing capabilities include a wide field (1 square arcmin), ground layer AO mode (WFM-AO) and a narrow field (7.5"x7.5"), laser tomography AO mode (NFM-AO). The latter has had several upgrades in the 4 years since commissioning, including an optimisation of the control matrices for the AO system and a new sub-electron noise detector for its infra-red low order wavefront sensor. We set out to quantify the NFM-AO system performance by analysing \sim230 spectrophotometric standard star observations taken over the last 3 years. To this end we expand upon previous work, designed to facilitate analysis of the WFM-AO system performance. We briefly describe the framework that will provide a user friendly, semi-automated way for system performance monitoring during science operations. We provide the results of our performance analysis, chiefly through the measured Strehl ratio and full width at half maximum (FWHM) of the core of the point spread function (PSF) using two PSF models, and correlations with atmospheric conditions. These results will feed into a range of applications, including providing a more accurate prediction of the system performance as implemented in the exposure time calculator, and the associated optimization of the scientific output for a given set of limiting atmospheric conditions.Comment: SPIE proceedings (2022), Observatory Operations: Strategies, Processes, and Systems I

    The equilibrium shape of (65) Cybele: primordial or relic of a large impact?

    Get PDF
    Cybele asteroids constitute an appealing reservoir of primitive material genetically linked to the outer Solar System, and the physical properties of the largest members can be readily accessed by large telescopes. We took advantage of the bright apparition of (65) Cybele in July and August 2021 to acquire high-angular-resolution images and optical light curves of the asteroid with which we aim to analyse its shape and bulk properties. 7 series of images acquired with VLT/SPHERE were combined with optical light curves to reconstruct the shape of the asteroid using the ADAM, MPCD, and SAGE algorithms. The origin of the shape was investigated by means of N-body simulations. Cybele has a volume-equivalent diameter of 263+/-3km and a bulk density of 1.55+/-0.19g.cm-3. Notably, its shape and rotation state are closely compatible with those of a Maclaurin equilibrium figure. The lack of a collisional family associated with Cybele and the higher bulk density of that body with respect to other large P-type asteroids suggest that it never experienced any large disruptive impact followed by rapid re-accumulation. This would imply that its present-day shape represents the original one. However, numerical integration of the long-term dynamical evolution of a hypothetical family shows that it is dispersed by gravitational perturbations and chaotic diffusion over Gyrs of evolution. The very close match between Cybele and an equilibrium figure opens up the possibility that D>260km small bodies from the outer Solar System all formed at equilibrium. However, we cannot rule out an old impact as the origin of the equilibrium shape. Cybele itself is found to be dynamically unstable, implying that it was recently (<1Ga) placed on its current orbit either through slow diffusion from a relatively stable orbit in the Cybele region or, less likely, from an unstable, JFC orbit in the planet-crossing region.Comment: 19 pages, 14 figures, 4 tables, accepted for publication in A&

    HARMONI at ELT: overview of the capabilities and expected performance of the ELT's first light, adaptive optics assisted integral field spectrograph.

    Get PDF

    Improved prior for adaptive optics point spread function estimation from science images: Application for deconvolution

    No full text
    Context . Access to knowledge of the point spread function (PSF) of adaptive optics(AO)-assisted observations is still a major limitation when processing AO data. This limitation is particularly important when image analysis requires the use of deconvolution methods. As the PSF is a complex and time-varying function, reference PSFs acquired on calibration stars before or after the scientific observation can be too different from the actual PSF of the observation to be used for deconvolution, and lead to artefacts in the final image. Aims . We improved the existing PSF-estimation method based on the so-called marginal approach by enhancing the object prior in order to make it more robust and suitable for observations of resolved extended objects. Methods . Our process is based on a two-step blind deconvolution approach from the literature. The first step consists of PSF estimation from the science image. For this, we made use of an analytical PSF model, whose parameters are estimated based on a marginal algorithm. This PSF was then used for deconvolution. In this study, we first investigated the requirements in terms of PSF parameter knowledge to obtain an accurate and yet resilient deconvolution process using simulations. We show that current marginal algorithms do not provide the required level of accuracy, especially in the presence of small objects. Therefore, we modified the marginal algorithm by providing a new model for object description, leading to an improved estimation of the required PSF parameters. Results . Our method fulfills the deconvolution requirement with realistic system configurations and different classes of Solar System objects in simulations. Finally, we validate our method by performing blind deconvolution with SPHERE/ZIMPOL observations of the Kleopatra asteroid

    SPHERE Unveils the True Face of the Largest Main Belt Asteroids

    No full text
    International audienceOver the past 2.5 years, we have been carrying out disc-resolved observations of a substantial fraction of all large (D > 100 km) main-belt asteroids, monitoring them at high angular resolution throughout their rotation, and sampling the main compositional classes, using the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument on the VLT. These observations enable us to characterise the internal structure of our targets from their density as well as their cratering record down to ~ 30 km in diameter. Such information, in turn, places unprecedented constraints on models of the formation of the Solar System and the collisional evolution of the main belt

    Performance characterization and near-realtime monitoring of MUSE adaptive optics modes at Paranal

    Get PDF
    The Multi Unit Spectroscopic Explorer (MUSE) is an integral field spectrograph on the Very Large Telescope Unit Telescope 4, capable of laser guide star assisted and tomographic adaptive optics using the GALACSI module. Its observing capabilities include a wide field (1 square arcmin), ground layer AO mode (WFM-AO) and a narrow field (7.5”×7.5”), laser tomography AO mode (NFM-AO). The latter has had several upgrades in the 4 years since commissioning, including an optimisation of the control matrices for the AO system and a new sub-electron noise detector for its infra-red low order wavefront sensor. We set out to quantify the NFM-AO system performance by analysing ∼230 spectrophotometric standard star observations taken over the last 3 years. To this end we expand upon previous work, designed to facilitate analysis of the WFM-AO system performance. We briefly describe the framework that will provide a user friendly, semi-automated way for system performance monitoring during science operations. We provide the results of our performance analysis, chiefly through the measured Strehl ratio and full width at half maximum (FWHM) of the core of the point spread function (PSF) using two PSF models, and correlations with atmospheric conditions. These results will feed into a range of applications, including providing a more accurate prediction of the system performance as implemented in the exposure time calculator, and the associated optimization of the scientific output for a given set of limiting atmospheric conditions

    The equilibrium shape of (65) Cybele: primordial or relic of a large impact?

    No full text
    Context. Cybele asteroids constitute an appealing reservoir of primitive material genetically linked to the outer Solar System, and the physical properties (size and shape) of the largest members can be readily accessed by large (8m class) telescopes. Aims. We took advantage of the bright apparition of the most iconic member of the Cybele population, (65) Cybele, in July and August 2021 to acquire high-angular-resolution images and optical light curves of the asteroid with which we aim to analyse its shape and bulk properties. Methods. Eight series of images were acquired with VLT/SPHERE+ZIMPOL, seven of which were combined with optical light curves to reconstruct the shape of the asteroid using the ADA

    Closing the gap between Earth-based and interplanetary mission observations: Vesta seen by VLT/SPHERE

    Get PDF
    Context. Over the past decades, several interplanetary missions have studied small bodies in situ, leading to major advances in our understanding of their geological and geophysical properties. These missions, however, have had a limited number of targets. Among them, the NASA Dawn mission has characterised in detail the topography and albedo variegation across the surface of asteroid (4) Vesta down to a spatial resolution of 20 m pixel[SUP]-1[/SUP] scale. Aims: Here our aim was to determine how much topographic and albedo information can be retrieved from the ground with VLT/SPHERE in the case of Vesta, having a former space mission (Dawn) providing us with the ground truth that can be used as a benchmark. Methods: We observed Vesta with VLT/SPHERE/ZIMPOL as part of our ESO large programme (ID 199.C-0074) at six different epochs, and deconvolved the collected images with a parametric point spread function (PSF). We then compared our images with synthetic views of Vesta generated from the 3D shape model of the Dawn mission, on which we projected Vesta's albedo information. Results: We show that the deconvolution of the VLT/SPHERE images with a parametric PSF allows the retrieval of the main topographic and albedo features present across the surface of Vesta down to a spatial resolution of 20-30 km. Contour extraction shows an accuracy of 1 pixel (3.6 mas). The present study provides the very first quantitative estimate of the accuracy of ground-based adaptive-optics imaging observations of asteroid surfaces. Conclusions: In the case of Vesta, the upcoming generation of 30-40 m telescopes (ELT, TMT, GMT) should in principle be able to resolve all of the main features present across its surface, including the troughs and the north-south crater dichotomy, provided that they operate at the diffraction limit. Reduced images of Table A.1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/623/A6Based on observations made with ESO Telescopes at the Paranal Observatory under programme ID 199.C-0074 (PI: P. Vernazza)
    corecore