198 research outputs found

    Genomic Organization and Evolution of the Vomeronasal Type 2 Receptor-Like (OlfC) Gene Clusters in Atlantic Salmon, Salmo salar

    Get PDF
    There are three major multigene superfamilies of olfactory receptors (OR, V1R, and V2R) in mammals. The ORs are expressed in the main olfactory organ, whereas the V1Rs and V2Rs are located in the vomeronasal organ. Fish only possess one olfactory organ in each nasal cavity, the olfactory rosette; therefore, it has been proposed that their V2R-like genes be classified as olfactory C family G protein-coupled receptors (OlfC). There are large variations in the sizes of OR gene repertoires. Previous studies have shown that fish have between 12 and 46 functional V2R-like genes, whereas humans have lost all functional V2Rs, and frog sp. have more than 240. Pseudogenization of V2R genes is a prevalent event across species. In the mouse and frog genomes, there are approximately double the number of pseudogenes compared with functional genes. An oligonucleotide probe was designed from a conserved sequence from four Atlantic salmon OlfC genes and used to screen the Atlantic salmon bacterial artificial chromosome (BAC) library. Hybridization-positive BACs were matched to fingerprint contigs, and representative BACs were shotgun cloned and sequenced. We identified 55 OlfC genes. Twenty-nine of the OlfC genes are classified as putatively functional genes and 26 as pseudogenes. The OlfC genes are found in two genomic clusters on chromosomes 9 and 20. Phylogenetic analysis revealed that the OlfC genes could be divided into 10 subfamilies, with nine of these subfamilies corresponding to subfamilies found in other teleosts and one being salmon specific. There is also a large expansion in the number of OlfC genes in one subfamily in Atlantic salmon. Subfamily gene expansions have been identified in other teleosts, and these differences in gene number reflect species-specific evolutionary requirements for olfaction. Total RNA was isolated from the olfactory epithelium and other tissues from a presmolt to examine the expression of the odorant genes. Several of the putative OlfC genes that we identified are expressed only in the olfactory epithelium, consistent with these genes encoding odorant receptors

    Genome Sequencing Shows that European Isolates of Francisella tularensis Subspecies tularensis Are Almost Identical to US Laboratory Strain Schu S4

    Get PDF
    BACKGROUND: Francisella tularensis causes tularaemia, a life-threatening zoonosis, and has potential as a biowarfare agent. F. tularensis subsp. tularensis, which causes the most severe form of tularaemia, is usually confined to North America. However, a handful of isolates from this subspecies was obtained in the 1980s from ticks and mites from Slovakia and Austria. Our aim was to uncover the origins of these enigmatic European isolates. METHODOLOGY/PRINCIPAL FINDINGS: We determined the complete genome sequence of FSC198, a European isolate of F. tularensis subsp. tularensis, by whole-genome shotgun sequencing and compared it to that of the North American laboratory strain Schu S4. Apparent differences between the two genomes were resolved by re-sequencing discrepant loci in both strains. We found that the genome of FSC198 is almost identical to that of Schu S4, with only eight SNPs and three VNTR differences between the two sequences. Sequencing of these loci in two other European isolates of F. tularensis subsp. tularensis confirmed that all three European isolates are also closely related to, but distinct from Schu S4. CONCLUSIONS/SIGNIFICANCE: The data presented here suggest that the Schu S4 laboratory strain is the most likely source of the European isolates of F. tularensis subsp. tularensis and indicate that anthropogenic activities, such as movement of strains or animal vectors, account for the presence of these isolates in Europe. Given the highly pathogenic nature of this subspecies, the possibility that it has become established wild in the heartland of Europe carries significant public health implications

    Genomic organization and evolution of the Atlantic salmon hemoglobin repertoire

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genomes of salmonids are considered pseudo-tetraploid undergoing reversion to a stable diploid state. Given the genome duplication and extensive biological data available for salmonids, they are excellent model organisms for studying comparative genomics, evolutionary processes, fates of duplicated genes and the genetic and physiological processes associated with complex behavioral phenotypes. The evolution of the tetrapod hemoglobin genes is well studied; however, little is known about the genomic organization and evolution of teleost hemoglobin genes, particularly those of salmonids. The Atlantic salmon serves as a representative salmonid species for genomics studies. Given the well documented role of hemoglobin in adaptation to varied environmental conditions as well as its use as a model protein for evolutionary analyses, an understanding of the genomic structure and organization of the Atlantic salmon α and β hemoglobin genes is of great interest.</p> <p>Results</p> <p>We identified four bacterial artificial chromosomes (BACs) comprising two hemoglobin gene clusters spanning the entire α and β hemoglobin gene repertoire of the Atlantic salmon genome. Their chromosomal locations were established using fluorescence <it>in situ </it>hybridization (FISH) analysis and linkage mapping, demonstrating that the two clusters are located on separate chromosomes. The BACs were sequenced and assembled into scaffolds, which were annotated for putatively functional and pseudogenized hemoglobin-like genes. This revealed that the tail-to-tail organization and alternating pattern of the α and β hemoglobin genes are well conserved in both clusters, as well as that the Atlantic salmon genome houses substantially more hemoglobin genes, including non-Bohr β globin genes, than the genomes of other teleosts that have been sequenced.</p> <p>Conclusions</p> <p>We suggest that the most parsimonious evolutionary path leading to the present organization of the Atlantic salmon hemoglobin genes involves the loss of a single hemoglobin gene cluster after the whole genome duplication (WGD) at the base of the teleost radiation but prior to the salmonid-specific WGD, which then produced the duplicated copies seen today. We also propose that the relatively high number of hemoglobin genes as well as the presence of non-Bohr β hemoglobin genes may be due to the dynamic life history of salmon and the diverse environmental conditions that the species encounters.</p> <p>Data deposition: BACs S0155C07 and S0079J05 (fps135): GenBank <ext-link ext-link-id="GQ898924" ext-link-type="gen">GQ898924</ext-link>; BACs S0055H05 and S0014B03 (fps1046): GenBank <ext-link ext-link-id="GQ898925" ext-link-type="gen">GQ898925</ext-link></p

    Identification and characterisation of novel SNP markers in Atlantic cod: Evidence for directional selection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Atlantic cod (<it>Gadus morhua</it>) is a groundfish of great economic value in fisheries and an emerging species in aquaculture. Genetic markers are needed to identify wild stocks in order to ensure sustainable management, and for marker-assisted selection and pedigree determination in aquaculture. Here, we report on the development and evaluation of a large number of Single Nucleotide Polymorphism (SNP) markers from the alignment of Expressed Sequence Tag (EST) sequences in Atlantic cod. We also present basic population parameters of the SNPs in samples of North-East Arctic cod and Norwegian coastal cod obtained from three different localities, and test for SNPs that may have been targeted by natural selection.</p> <p>Results</p> <p>A total of 17,056 EST sequences were used to find 724 putative SNPs, from which 318 segregating SNPs were isolated. The SNPs were tested on Atlantic cod from four different sites, comprising both North-East Arctic cod (NEAC) and Norwegian coastal cod (NCC). The average heterozygosity of the SNPs was 0.25 and the average minor allele frequency was 0.18. <it>F</it><sub><it>ST </it></sub>values were highly variable, with the majority of SNPs displaying very little differentiation while others had <it>F</it><sub><it>ST </it></sub>values as high as 0.83. The <it>F</it><sub><it>ST </it></sub>values of 29 SNPs were found to be larger than expected under a strictly neutral model, suggesting that these loci are, or have been, influenced by natural selection. For the majority of these outlier SNPs, allele frequencies in a northern sample of NCC were intermediate between allele frequencies in a southern sample of NCC and a sample of NEAC, indicating a cline in allele frequencies similar to that found at the Pantophysin I locus.</p> <p>Conclusion</p> <p>The SNP markers presented here are powerful tools for future genetics work related to management and aquaculture. In particular, some SNPs exhibiting high levels of population divergence have potential to significantly enhance studies on the population structure of Atlantic cod.</p

    The maternal and early embryonic transcriptome of the milkweed bug Oncopeltus fasciatus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most evolutionary developmental biology ("evo-devo") studies of emerging model organisms focus on small numbers of candidate genes cloned individually using degenerate PCR. However, newly available sequencing technologies such as 454 pyrosequencing have recently begun to allow for massive gene discovery in animals without sequenced genomes. Within insects, although large volumes of sequence data are available for holometabolous insects, developmental studies of basally branching hemimetabolous insects typically suffer from low rates of gene discovery.</p> <p>Results</p> <p>We used 454 pyrosequencing to sequence over 500 million bases of cDNA from the ovaries and embryos of the milkweed bug <it>Oncopeltus fasciatus</it>, which lacks a sequenced genome. This indirectly developing insect occupies an important phylogenetic position, branching basal to Diptera (including fruit flies) and Hymenoptera (including honeybees), and is an experimentally tractable model for short-germ development. 2,087,410 reads from both normalized and non-normalized cDNA assembled into 21,097 sequences (isotigs) and 112,531 singletons. The assembled sequences fell into 16,617 unique gene models, and included predictions of splicing isoforms, which we examined experimentally. Discovery of new genes plateaued after assembly of ~1.5 million reads, suggesting that we have sequenced nearly all transcripts present in the cDNA sampled. Many transcripts have been assembled at close to full length, and there is a net gain of sequence data for over half of the pre-existing <it>O. fasciatus </it>accessions for developmental genes in GenBank. We identified 10,775 unique genes, including members of all major conserved metazoan signaling pathways and genes involved in several major categories of early developmental processes. We also specifically address the effects of cDNA normalization on gene discovery in <it>de novo </it>transcriptome analyses.</p> <p>Conclusions</p> <p>Our sequencing, assembly and annotation framework provide a simple and effective way to achieve high-throughput gene discovery for organisms lacking a sequenced genome. These data will have applications to the study of the evolution of arthropod genes and genetic pathways, and to the wider evolution, development and genomics communities working with emerging model organisms.</p> <p>[The sequence data from this study have been submitted to GenBank under study accession number SRP002610 (<url>http://www.ncbi.nlm.nih.gov/sra?term=SRP002610</url>). Custom scripts generated are available at <url>http://www.extavourlab.com/protocols/index.html</url>. Seven Additional files are available.]</p

    Predisposition to Cancer Caused by Genetic and Functional Defects of Mammalian Atad5

    Get PDF
    ATAD5, the human ortholog of yeast Elg1, plays a role in PCNA deubiquitination. Since PCNA modification is important to regulate DNA damage bypass, ATAD5 may be important for suppression of genomic instability in mammals in vivo. To test this hypothesis, we generated heterozygous (Atad5+/m) mice that were haploinsuffficient for Atad5. Atad5+/m mice displayed high levels of genomic instability in vivo, and Atad5+/m mouse embryonic fibroblasts (MEFs) exhibited molecular defects in PCNA deubiquitination in response to DNA damage, as well as DNA damage hypersensitivity and high levels of genomic instability, apoptosis, and aneuploidy. Importantly, 90% of haploinsufficient Atad5+/m mice developed tumors, including sarcomas, carcinomas, and adenocarcinomas, between 11 and 20 months of age. High levels of genomic alterations were evident in tumors that arose in the Atad5+/m mice. Consistent with a role for Atad5 in suppressing tumorigenesis, we also identified somatic mutations of ATAD5 in 4.6% of sporadic human endometrial tumors, including two nonsense mutations that resulted in loss of proper ATAD5 function. Taken together, our findings indicate that loss-of-function mutations in mammalian Atad5 are sufficient to cause genomic instability and tumorigenesis

    Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism

    Get PDF
    Increased risk for autism spectrum disorders (ASD) is attributed to hundreds of genetic loci. The convergence of ASD variants have been investigated using various approaches, including protein interactions extracted from the published literature. However, these datasets are frequently incomplete, carry biases and are limited to interactions of a single splicing isoform, which may not be expressed in the disease-relevant tissue. Here we introduce a new interactome mapping approach by experimentally identifying interactions between brain-expressed alternatively spliced variants of ASD risk factors. The Autism Spliceform Interaction Network reveals that almost half of the detected interactions and about 30% of the newly identified interacting partners represent contribution from splicing variants, emphasizing the importance of isoform networks. Isoform interactions greatly contribute to establishing direct physical connections between proteins from the de novo autism CNVs. Our findings demonstrate the critical role of spliceform networks for translating genetic knowledge into a better understanding of human diseases

    A novel approach to locate Phytophthora infestans resistance genes on the potato genetic map

    Get PDF
    Mapping resistance genes is usually accomplished by phenotyping a segregating population for the resistance trait and genotyping it using a large number of markers. Most resistance genes are of the NBS-LRR type, of which an increasing number is sequenced. These genes and their analogs (RGAs) are often organized in clusters. Clusters tend to be rather homogenous, viz. containing genes that show high sequence similarity with each other. From many of these clusters the map position is known. In this study we present and test a novel method to quickly identify to which cluster a new resistance gene belongs and to produce markers that can be used for introgression breeding. We used NBS profiling to identify markers in bulked DNA samples prepared from resistant and susceptible genotypes of small segregating populations. Markers co-segregating with resistance can be tested on individual plants and directly used for breeding. To identify the resistance gene cluster a gene belongs to, the fragments were sequenced and the sequences analyzed using bioinformatics tools. Putative map positions arising from this analysis were validated using markers mapped in the segregating population. The versatility of the approach is demonstrated with a number of populations derived from wild Solanum species segregating for P. infestans resistance. Newly identified P. infestans resistance genes originating from S. verrucosum, S. schenckii, and S. capsicibaccatum could be mapped to potato chromosomes 6, 4, and 11, respectively

    Assessing the importance of car meanings and attitudes in consumer evaluations of electric vehicles

    Get PDF
    This paper reports findings from a research study which assesses the importance of attitudinal constructs related to general car attitudes and the meanings attached to car ownership over evaluations of electric vehicles (EVs). The data are assessed using principal component analysis to evaluate the structure of the underlying attitudinal constructs. The identified constructs are then entered into a hierarchical regression analysis which uses either positive or negative evaluations of the instrumental capabilities of EVs as the dependent variable. Results show that attitudinal constructs offer additional predictive power over socioeconomic characteristics and that the symbolic and emotive meanings of car ownership are as, if not more, effective in explaining the assessment of EV instrumental capability as compared to issues of cost and environmental concern. Additionally, the more important an individual considers their car to be in their everyday life, the more negative their evaluations are of EVs whilst individuals who claim to be knowledgeable about cars in general and EVs in particular have a lower propensity for negative EV attitudes. However, positive and negative EV attitudes are related to different attitudinal constructs suggesting that it is possible for someone to hold both negative and positive assessments at the same time
    corecore