226 research outputs found

    SROI in the art gallery: valuing social impact

    Get PDF
    This article considers a project that used the Social Return on Investment (SROI) methodology to describe and measure the social impact of Turner Contemporary art gallery in Margate, a coastal town in the South East of England. The article details the reasons why the methodology was chosen by the gallery, setting this in the context of the wider debate around evaluation and social impact reporting. A section of the research and analysis, which was carried out by COaST, a consultancy and research centre based within Canterbury Christ Church University, is described in detail, allowing the reader to understand the processes involved in this type of project and the kinds of outcomes that can be delivered using this method. Finally, an account is given of the impact the work had on the management of the gallery, and the ways in which the final report was used

    World Health Organization critical priority Escherichia coli clone ST648 in magnificent frigatebird (Fregata magnificens) of an uninhabited insular environment

    Get PDF
    Antimicrobial resistance is an ancient natural phenomenon increasingly pressured by anthropogenic activities. Escherichia coli has been used as markers of environmental contamination and human-related activity. Seabirds may be bioindicators of clinically relevant bacterial pathogens and their antimicrobial resistance genes, including extended-spectrum-beta-lactamase (ESBL) and/or plasmid-encoded AmpC (pAmpC), in anthropized and remote areas. We evaluated cloacal swabs of 20 wild magnificent frigatebirds (Fregata magnificens) of the Alcatrazes Archipelago, the biggest breeding colony of magnificent frigatebirds in the southern Atlantic and a natural protected area with no history of human occupation, located in the anthropized southeastern Brazilian coast. We characterized a highly virulent multidrug-resistant ST648 (O153:H9) pandemic clone, harboring bla, bla, qnrB, tetB, sul1, sul2, aadA1, aac(3)-VIa and mdfA, and virulence genes characteristic of avian pathogenic (APEC) (hlyF, iroN, iss, iutA, and ompT) and other extraintestinal E. coli (ExPEC) (chuA, kpsMII, and papC). To our knowledge, this is the first report of ST648 E. coli co-producing ESBL and pAmpC in wild birds inhabiting insular environments. We suggest this potentially zoonotic and pathogenic lineage was likely acquired through indirect anthropogenic contamination of the marine environment, ingestion of contaminated seafood, or by intra and/or interspecific contact. Our findings reinforce the role of wild birds as anthropization sentinels in insular environments and the importance of wildlife surveillance studies on pathogens of critical priority classified by the World Health Organization

    A Two-Gene Balance Regulates Salmonella Typhimurium Tolerance in the Nematode Caenorhabditis elegans

    Get PDF
    Lysozymes are antimicrobial enzymes that perform a critical role in resisting infection in a wide-range of eukaryotes. However, using the nematode Caenorhabditis elegans as a model host we now demonstrate that deletion of the protist type lysozyme LYS-7 renders animals susceptible to killing by the fatal fungal human pathogen Cryptococcus neoformans, but, remarkably, enhances tolerance to the enteric bacteria Salmonella Typhimurium. This trade-off in immunological susceptibility in C. elegans is further mediated by the reciprocal activity of lys-7 and the tyrosine kinase abl-1. Together this implies a greater complexity in C. elegans innate immune function than previously thought

    Adapting effects of emotional expression in anxiety: evidence for an enhanced late positive potential

    Get PDF
    An adaptation paradigm was used to investigate the influence of a previously experienced visual context on the interpretation of ambiguous emotional expressions. Affective classification of fear-neutral ambiguous expressions was performed following repeated exposure to either fearful or neutral faces. There was a shift in the behavioural classification of morphs towards ‘fear’ following adaptation to neutral compared to adaptation to fear with a non-significant trend towards the high anxiety group compared to the low being more influenced by the context. The event-related potential (ERP) data revealed a more pronounced late positive potential (LPP), beginning at ~400 ms post-stimulus onset, in the high but not the low anxiety group following adaptation to neutral compared to fear. In addition, as the size of the behavioural adaptation increased there was a linear increase in the magnitude of the late-LPP. However, context-sensitivity effects are not restricted to trait anxiety, with similar effects observed with state anxiety and depression. These data support the proposal that negative moods are associated with increased sensitivity to visual contextual influences from top-down elaborative modulations, as reflected in an enhanced late positive potential deflection

    Genome-Wide Gene Expression Analysis in Response to Organophosphorus Pesticide Chlorpyrifos and Diazinon in C. elegans

    Get PDF
    Organophosphorus pesticides (OPs) were originally designed to affect the nervous system by inhibiting the enzyme acetylcholinesterase, an important regulator of the neurotransmitter acetylcholine. Over the past years evidence is mounting that these compounds affect many other processes. Little is known, however, about gene expression responses against OPs in the nematode Caenorhabditis elegans. This is surprising because C. elegans is extensively used as a model species in toxicity studies. To address this question we performed a microarray study in C. elegans which was exposed for 72 hrs to two widely used Ops, chlorpyrifos and diazinon, and a low dose mixture of these two compounds. Our analysis revealed transcriptional responses related to detoxification, stress, innate immunity, and transport and metabolism of lipids in all treatments. We found that for both compounds as well as in the mixture, these processes were regulated by different gene transcripts. Our results illustrate intense, and unexpected crosstalk between gene pathways in response to chlorpyrifos and diazinon in C. elegans

    A Genome-Wide Collection of Mos1 Transposon Insertion Mutants for the C. elegans Research Community

    Get PDF
    Methods that use homologous recombination to engineer the genome of C. elegans commonly use strains carrying specific insertions of the heterologous transposon Mos1. A large collection of known Mos1 insertion alleles would therefore be of general interest to the C. elegans research community. We describe here the optimization of a semi-automated methodology for the construction of a substantial collection of Mos1 insertion mutant strains. At peak production, more than 5,000 strains were generated per month. These strains were then subject to molecular analysis, and more than 13,300 Mos1 insertions characterized. In addition to targeting directly more than 4,700 genes, these alleles represent the potential starting point for the engineered deletion of essentially all C. elegans genes and the modification of more than 40% of them. This collection of mutants, generated under the auspices of the European NEMAGENETAG consortium, is publicly available and represents an important research resource

    Age, gender, and cancer but not neurodegenerative and cardiovascular diseases strongly modulate systemic effect of the Apolipoprotein E4 allele on lifespan

    Get PDF
    Enduring interest in the Apolipoprotein E (ApoE) polymorphism is ensured by its evolutionary-driven uniqueness in humans and its prominent role in geriatrics and gerontology. We use large samples of longitudinally followed populations from the Framingham Heart Study (FHS) original and offspring cohorts and the Long Life Family Study (LLFS) to investigate gender-specific effects of the ApoE4 allele on human survival in a wide range of ages from midlife to extreme old ages, and the sensitivity of these effects to cardiovascular disease (CVD), cancer, and neurodegenerative disorders (ND). The analyses show that women's lifespan is more sensitive to the e4 allele than men's in all these populations. A highly significant adverse effect of the e4 allele is limited to women with moderate lifespan of about 70 to 95 years in two FHS cohorts and the LLFS with relative risk of death RR = 1.48 (p = 3.6×10(−6)) in the FHS cohorts. Major human diseases including CVD, ND, and cancer, whose risks can be sensitive to the e4 allele, do not mediate the association of this allele with lifespan in large FHS samples. Non-skin cancer non-additively increases mortality of the FHS women with moderate lifespans increasing the risks of death of the e4 carriers with cancer two-fold compared to the non-e4 carriers, i.e., RR = 2.07 (p = 5.0×10(−7)). The results suggest a pivotal role of non-sex-specific cancer as a nonlinear modulator of survival in this sample that increases the risk of death of the ApoE4 carriers by 150% (p = 5.3×10(−8)) compared to the non-carriers. This risk explains the 4.2 year shorter life expectancy of the e4 carriers compared to the non-carriers in this sample. The analyses suggest the existence of age- and gender-sensitive systemic mechanisms linking the e4 allele to lifespan which can non-additively interfere with cancer-related mechanisms

    A nuclear role for the respiratory enzyme CLK-1 in regulating mitochondrial stress responses and longevity

    Get PDF
    The coordinated regulation of mitochondrial and nuclear activities is essential for cellular respiration and its disruption leads to mitochondrial dysfunction, a hallmark of ageing. Mitochondria communicate with nuclei through retrograde signalling pathways that modulate nuclear gene expression to maintain mitochondrial homeostasis. The monooxygenase CLK-1 (human homologue COQ7) was previously reported to be mitochondrial, with a role in respiration and longevity. We have uncovered a distinct nuclear form of CLK-1 that independently regulates lifespan. Nuclear CLK-1 mediates a retrograde signalling pathway that is conserved from Caenorhabditis elegans to humans and is responsive to mitochondrial reactive oxygen species, thus acting as a barometer of oxidative metabolism. We show that, through modulation of gene expression, the pathway regulates both mitochondrial reactive oxygen species metabolism and the mitochondrial unfolded protein response. Our results demonstrate that a respiratory enzyme acts in the nucleus to control mitochondrial stress responses and longevity

    A Role for SKN-1/Nrf in Pathogen Resistance and Immunosenescence in Caenorhabditis elegans

    Get PDF
    A proper immune response ensures survival in a hostile environment and promotes longevity. Recent evidence indicates that innate immunity, beyond antimicrobial effectors, also relies on host-defensive mechanisms. The Caenorhabditis elegans transcription factor SKN-1 regulates xenobiotic and oxidative stress responses and contributes to longevity, however, its role in immune defense is unknown. Here we show that SKN-1 is required for C. elegans pathogen resistance against both Gram-negative Pseudomonas aeruginosa and Gram-positive Enterococcus faecalis bacteria. Exposure to P. aeruginosa leads to SKN-1 accumulation in intestinal nuclei and transcriptional activation of two SKN-1 target genes, gcs-1 and gst-4. Both the Toll/IL-1 Receptor domain protein TIR-1 and the p38 MAPK PMK-1 are required for SKN-1 activation by PA14 exposure. We demonstrate an early onset of immunosenescence with a concomitant age-dependent decline in SKN-1-dependent target gene activation, and a requirement of SKN-1 to enhance pathogen resistance in response to longevity-promoting interventions, such as reduced insulin/IGF-like signaling and preconditioning H2O2 treatment. Finally, we find that wdr-23(RNAi)-mediated constitutive SKN-1 activation results in excessive transcription of target genes, confers oxidative stress tolerance, but impairs pathogen resistance. Our findings identify SKN-1 as a novel regulator of innate immunity, suggests its involvement in immunosenescence and provide an important crosstalk between pathogenic stress signaling and the xenobiotic/oxidative stress response
    • …
    corecore