36 research outputs found
The interaction between gaze and facial expression in the amygdala and extended amygdala is modulated by anxiety
Behavioral evidence indicates that angry faces are seen as more threatening, and elicit greater anxiety, when directed at the observer, whereas the influence of gaze on the processing of fearful faces is less consistent. Recent research has also found inconsistent effects of expression and gaze direction on the amygdala response to facial signals of threat. However, such studies have failed to consider the important influence of anxiety on the response to signals of threat; an influence that is well established in behavioral research and recent neuroimaging studies. Here, we investigated the way in which individual differences in anxiety would influence the interactive effect of gaze and expression on the response to angry and fearful faces in the human extended amygdala. Participants viewed images of fearful, angry and neutral faces, either displaying an averted or direct gaze. We found that state anxiety predicted an increased response in the dorsal amygdala/substantia innominata (SI) to angry faces when gazing at, relative to away from the observer. By contrast, high state anxious individuals showed an increased amygdala response to fearful faces that was less dependent on gaze. In addition, the relationship between state anxiety and gaze on emotional intensity ratings mirrored the relationship between anxiety and the amygdala/SI response. These results have implications for understanding the functional role of the amygdala and extended amygdala in processing signals of threat, and are consistent with the proposed role of this region in coding the relevance or significance of a stimulus to the observer
The effects of transcranial direct current stimulation on within- and cross-paradigm transfer following multi-session backward recall training.
Transcranial direct current stimulation (tDCS) has been shown to enhance the efficacy and generalisation of working memory (WM) training, but there has been little systematic investigation into how coupling task-specific WM training with stimulation impacts more specifically on transfer to untrained tasks. This randomised controlled trial investigated the boundary conditions to transfer by testing firstly whether the benefits of training on backward digit recall (BDR) extend to untrained backward recall tasks and n-back tasks with different materials, and secondly which, if any, form of transfer is enhanced by tDCS. Forty-eight participants were allocated to one of three conditions: BDR training with anodal (10 min, 1 mA) or sham tDCS, or visual search training with sham tDCS, applied over the left dorsolateral prefrontal cortex. Transfer was assessed on within- (backward recall with digits, letters, and spatial locations) and cross-paradigm (n-back with digits and letters) transfer tests following three sessions of training and stimulation. On-task training gains were found, with transfer to other backward span but not n-back tasks. There was little evidence that tDCS enhanced on-task training or transfer. These findings indicate that training enhances paradigm-specific processes within WM, but that tDCS does not enhance these gains
Different neural mechanisms within occipitotemporal cortex underlie repetition suppression across same and different-size faces.
Repetition suppression (RS) (or functional magnetic resonance imaging adaptation) refers to the reduction in blood oxygen level-dependent signal following repeated presentation of a stimulus. RS is frequently used to investigate the role of face-selective regions in human visual cortex and is commonly thought to be a "localized" effect, reflecting fatigue of a neuronal population representing a given stimulus. In contrast, predictive coding theories characterize RS as a consequence of "top-down" changes in between-region modulation. Differentiating between these accounts is crucial for the correct interpretation of RS effects in the face-processing network. Here, dynamic causal modeling revealed that different mechanisms underlie different forms of RS to faces in occipitotemporal cortex. For both familiar and unfamiliar faces, repetition of identical face images (same size) was associated with changes in "forward" connectivity between the occipital face area (OFA) and the fusiform face area (FFA) (OFA-to-FFA). In contrast, RS across image size was characterized by altered "backward" connectivity (FFA-to-OFA). In addition, evidence was higher for models in which information projected directly into both OFA and FFA, challenging the role of OFA as the input stage of the face-processing network. These findings suggest "size-invariant" RS to faces is a consequence of interactions between regions rather than being a localized effect
Psychopathic traits influence amygdala-anterior cingulate cortex connectivity during facial emotion processing
There is accumulating evidence that youths with antisocial behavior or psychopathic traits show deficits in facial emotion recognition, but little is known about the neural mechanisms underlying these impairments. A number of neuroimaging studies have investigated brain activity during facial emotion processing in youths with Conduct Disorder (CD) and adults with psychopathy, but few of these studies tested for group differences in effective connectivity—i.e. changes in connectivity during emotion processing. Using functional magnetic resonance imaging and psycho-physiological interaction methods, we investigated the impact of CD and psychopathic traits on amygdala activity and effective connectivity in 46 male youths with CD and 25 typically-developing controls when processing emotional faces. All participants were aged 16–21 years. Relative to controls, youths with CD showed reduced amygdala activity when processing angry or sad faces relative to neutral faces, but the groups did not significantly differ in amygdala-related effective connectivity. In contrast, psychopathic traits were negatively correlated with amygdala–ventral anterior cingulate cortex connectivity for angry vs neutral faces, but were unrelated to amygdala responses to angry or sad faces. These findings suggest that CD and psychopathic traits have differential effects on amygdala activation and functional interactions between limbic regions during facial emotion processing
Personality influences the neural responses to viewing facial expressions of emotion
Cognitive research has long been aware of the relationship between individual differences in personality and performance on behavioural tasks. However, within the field of cognitive neuroscience, the way in which such differences manifest at a neural level has received relatively little attention. We review recent research addressing the relationship between personality traits and the neural response to viewing facial signals of emotion. In one section, we discuss work demonstrating the relationship between anxiety and the amygdala response to facial signals of threat. A second section considers research showing that individual differences in reward drive (behavioural activation system), a trait linked to aggression, influence the neural responsivity and connectivity between brain regions implicated in aggression when viewing facial signals of anger. Finally, we address recent criticisms of the correlational approach to fMRI analyses and conclude that when used appropriately, analyses examining the relationship between personality and brain activity provide a useful tool for understanding the neural basis of facial expression processing and emotion processing in general
Autism Spectrum Traits in the Typical Population Predict Structure and Function in the Posterior Superior Temporal Sulcus
Autism spectrum disorders (ASDs) are typically characterized by impaired social interaction and communication, narrow interests, and repetitive behaviors. The heterogeneity in the severity of these characteristics across individuals with ASD has led some researchers to suggest that these disorders form a continuum which extends into the general, or “typical,” population, and there is growing evidence that the extent to which typical adults display autistic traits, as measured using the autism-spectrum quotient (AQ), predicts performance on behavioral tasks that are impaired in ASD. Here, we show that variation in autism spectrum traits is related to cortical structure and function within the typical population. Voxel-based morphometry showed that increased AQ scores were associated with decreased white matter volume in the posterior superior temporal sulcus (pSTS), a region important in processing socially relevant stimuli and associated with structural and functional impairments in ASD. In addition, AQ was correlated with the extent of cortical deactivation of an adjacent area of pSTS during a Stroop task relative to rest, reflecting variation in resting state function. The results provide evidence that autism spectrum characteristics are reflected in neural structure and function across the typical (non-ASD) population
Age, gender, and cancer but not neurodegenerative and cardiovascular diseases strongly modulate systemic effect of the Apolipoprotein E4 allele on lifespan
Enduring interest in the Apolipoprotein E (ApoE) polymorphism is ensured by its evolutionary-driven uniqueness in humans and its prominent role in geriatrics and gerontology. We use large samples of longitudinally followed populations from the Framingham Heart Study (FHS) original and offspring cohorts and the Long Life Family Study (LLFS) to investigate gender-specific effects of the ApoE4 allele on human survival in a wide range of ages from midlife to extreme old ages, and the sensitivity of these effects to cardiovascular disease (CVD), cancer, and neurodegenerative disorders (ND). The analyses show that women's lifespan is more sensitive to the e4 allele than men's in all these populations. A highly significant adverse effect of the e4 allele is limited to women with moderate lifespan of about 70 to 95 years in two FHS cohorts and the LLFS with relative risk of death RR = 1.48 (p = 3.6×10(−6)) in the FHS cohorts. Major human diseases including CVD, ND, and cancer, whose risks can be sensitive to the e4 allele, do not mediate the association of this allele with lifespan in large FHS samples. Non-skin cancer non-additively increases mortality of the FHS women with moderate lifespans increasing the risks of death of the e4 carriers with cancer two-fold compared to the non-e4 carriers, i.e., RR = 2.07 (p = 5.0×10(−7)). The results suggest a pivotal role of non-sex-specific cancer as a nonlinear modulator of survival in this sample that increases the risk of death of the ApoE4 carriers by 150% (p = 5.3×10(−8)) compared to the non-carriers. This risk explains the 4.2 year shorter life expectancy of the e4 carriers compared to the non-carriers in this sample. The analyses suggest the existence of age- and gender-sensitive systemic mechanisms linking the e4 allele to lifespan which can non-additively interfere with cancer-related mechanisms
SMF-1, SMF-2 and SMF-3 DMT1 Orthologues Regulate and Are Regulated Differentially by Manganese Levels in C. elegans
Manganese (Mn) is an essential metal that can exert toxic effects at high concentrations, eventually leading to Parkinsonism. A major transporter of Mn in mammals is the divalent-metal transporter (DMT1). We characterize here DMT1-like proteins in the nematode C. elegans, which regulate and are regulated by Mn and iron (Fe) content. We identified three new DMT1-like genes in C. elegans: smf-1, smf-2 and smf-3. All three can functionally substitute for loss of their yeast orthologues in S. cerevisiae. In the worm, deletion of smf-1 or smf-3 led to an increased Mn tolerance, while loss of smf-2 led to increased Mn sensitivity. smf mRNA levels measured by QRT-PCR were up-regulated upon low Mn and down-regulated upon high Mn exposures. Translational GFP-fusions revealed that SMF-1 and SMF-3 strongly localize to partially overlapping apical regions of the gut epithelium, suggesting a differential role for SMF-1 and SMF-3 in Mn nutritional intake. Conversely, SMF-2 was detected in the marginal pharyngeal epithelium, possibly involved in metal-sensing. Analysis of metal content upon Mn exposure in smf mutants revealed that SMF-3 is required for normal Mn uptake, while smf-1 was dispensable. Higher smf-2 mRNA levels correlated with higher Fe content, supporting a role for SMF-2 in Fe uptake. In smf-1 and smf-3 but not in smf-2 mutants, increased Mn exposure led to decreased Fe levels, suggesting that both metals compete for transport by SMF-2. Finally, SMF-3 was post-translationally and reversibly down-regulated following Mn-exposure. In sum, we unraveled a complex interplay of transcriptional and post-translational regulations of 3 DMT1-like transporters in two adjacent tissues, which regulate metal-content in C. elegans
Pratos e mais pratos: louças domésticas, divisões culturais e limites sociais no Rio de Janeiro, século XIX
Reply to ten comments on a paper published in the last issue of this journal. The discussion follows along six main lines: History museums, identity, ideology and the category of nation; the need of material collections and their modalities: patrimonial, operational, virtual; theater versus laboratory; visitors and their ambiguities; Public History: the museum and the academy.Resposta aos comentários de dez especialistas que contribuíram no debate de texto publicado no último número desta revista. A discussão orientou-se segundo seis tópicos principais: museus históricos, identidade, ideologia e a categoria de nação; a necessidade de acervos materiais e suas modalidades: acervo patrimonial, operacional, virtual; teatro versus laboratório; o público e suas ambigüidades; História Pública: o museu e a Academia