72 research outputs found

    Multimodal Optical Diagnostics of the Microhaemodynamics in Upper and Lower Limbs

    Get PDF
    The introduction of optical non-invasive diagnostic methods into clinical practice can substantially advance in the detection of early microcirculatory disorders in patients with different diseases. This paper is devoted to the development and application of the optical non-invasive diagnostic approach for the detection and evaluation of the severity of microcirculatory and metabolic disorders in rheumatic diseases and diabetes mellitus. The proposed methods include the joint use of laser Doppler flowmetry, absorption spectroscopy and fluorescence spectroscopy in combination with functional tests. This technique showed the high diagnostic importance for the detection of disturbances in peripheral microhaemodynamics. These methods have been successfully tested as additional diagnostic techniques in the field of rheumatology and endocrinology. The sensitivity and specificity of the proposed diagnostic procedures have been evaluated

    Multimodal optical diagnostics of the microhaemodynamics in upper and lower limbs

    Get PDF
    The introduction of optical non-invasive diagnostic methods into clinical practice can substantially advance in the detection of early microcirculatory disorders in patients with different diseases. This paper is devoted to the development and application of the optical non-invasive diagnostic approach for the detection and evaluation of the severity of microcirculatory and metabolic disorders in rheumatic diseases and diabetes mellitus. The proposed methods include the joint use of laser Doppler flowmetry, absorption spectroscopy and fluorescence spectroscopy in combination with functional tests. This technique showed the high diagnostic importance for the detection of disturbances in peripheral microhaemodynamics. These methods have been successfully tested as additional diagnostic techniques in the field of rheumatology and endocrinology. The sensitivity and specificity of the proposed diagnostic procedures have been evaluated.<br/

    Novel measure for the calibration of laser Doppler flowmetry devices

    Get PDF
    The metrological basis for optical non-invasive diagnostic devices is an unresolved issue. A major challenge for laser Doppler flowmetry (LDF) is the need to compare the outputs from individual devices and various manufacturers to identify variations useful in clinical diagnostics. The most common methods for instrument calibration are simulants or phantoms composed of colloids of light-scattering particles which simulate the motion of red blood cells based on Brownian motion. However, such systems have limited accuracy or stability and cannot calibrate for the known rhythmic components of perfusion (0.0095-1.6 Hz). To solve this problem, we propose the design of a novel technique based on the simulation of moving particles using an electromechanical transducer, in which a precision piezoelectric actuator is used (e.g., P-602.8SL with maximum movement less than 1 mm). In this system, Doppler shift is generated in the layered structure of different solid materials with different optical light diffusing properties. This comprises a fixed, light transparent upper plane-parallel plate and an oscillating fluoroplastic (PTFE) disk. Preliminary studies on this experimental setup using the LDF-channel of a "LAKK-M" system demonstrated the detection of the linear portion (0-10 Hz with a maximum signal corresponding to Doppler shift of about 20 kHz) of the LDF-signal from the oscillating frequency of the moving layer. The results suggest the possibility of applying this technique for the calibration of LDF devices

    Noninvasive control of rhodamine-loaded capsules distribution in vivo

    Get PDF
    Using fluorescence spectroscopy system with fibre-optical probe, we investigated the dynamics of propagation and circulation in the microcirculatory system of experimental nanocapsules fluorescent-labelled (rhodamine TRITC) nanocapsules. The studies were carried out in clinically healthy Wistar rats. The model animals were divided into control group and group received injections of the nanocapsules. The fluorescent measurements conducted transcutaneously on the thigh surface. The administration of the preparation with the rhodamine concentration of 5 mg/kg of animal weight resulted in twofold increase of fluorescence intensity by reference to the baseline level. As a result of the study, it was concluded that fluorescence spectroscopy can be used for transdermal measurements of the rhodamine-loaded capsules in vivo

    Combined use of laser Doppler flowmetry and skin thermometry for functional diagnostics of intradermal finger vessels

    Get PDF
    We introduce a noninvasive diagnostic approach for functional monitoring of blood microflows in capillaries and thermoregulatory vessels within the skin. The measuring system is based on the combined use of laser Doppler flowmetry and skin contact thermometry. The obtained results suggest that monitoring of blood microcirculation during the occlusion, performed in conjunction with the skin temperature measurements in the thermally stabilized medium, has a great potential for quantitative assessment of angiospatic dysfunctions of the peripheral blood vessels. The indices of blood flow reserve and temperature response were measured and used as the primarily parameters of the functional diagnostics of the peripheral vessels of skin. Utilizing these parameters, a simple phenomenological model has been suggested to identify patients with angiospastic violations in the vascular system

    Blood flow oscillations as a signature of microvascular abnormalities

    Get PDF
    Laser Doppler flowmetry (LDF) was utilized for blood ow measurements. Wavelet analysis was used to identify spectral characteristics of the LDF signal in patients with rheumatic diseases and diabetes mellitus. Baseline measurements were applied for both pathological groups. Blood flow oscillations analyses were performed by means of the wavelet transform. Higher baseline perfusion was observed in both pathological groups in comparison to controls. Differences in the spectral properties between the groups studied were revealed. The results obtained demonstrated that spectral properties of the LDF signal collected in basal conditions may be the signature of microvasculature functional state

    Use of fluorescent optical fibre probe for recording parameters of brain metabolism in rat model

    Get PDF
    This studiy was carried out on groups of clinically healthy male Wistar rats. Animals received distilled drinking water ad libitum for 1 month, water containing succinic acid, water containing zinc sulphate and succinate zinc. Using the method of fluorescence spectroscopy, the parameters of brain metabolism in vivo in a model of laboratory rats was investigated. Based on data obtained by fluorescence spectroscopy, we have registered a change in the degree of cellular respiration in different structures of the cerebral cortex with the toxic effect of zinc compounds and succinic acid on the oxygen exchange process

    405-nm pumped Ce3+-doped silica fiber for broadband fluorescence from cyan to red

    Get PDF
    A pure Ce-doped silica fiber is fabricated using modified chemical vapor deposition (MCVD) technique. Fluorescence characteristics of a Ce-doped silica fiber are experimentally investigated with continuous wave pumping from 440 nm to 405 nm. Best pump absorption and broad fluorescence spectrum is observed for ~ 405 nm laser. Next, the detailed analysis of spectral response as a function of pump power and fiber length is performed. It is observed that a -10dB spectral width of ~ 280 mn can be easily achieved with different combinations of the fiber length and pump power. Lastly, we present, for the first time to the best of our knowledge, a broadband fluorescence spectrum with -10dB spectral width of 301 nm, spanning from ~ 517.36 nm to ~ 818 nm, from such fibers with non-UV pump lasers

    Application of the fluorescence spectroscopy for the analysis of the state of abdominal cavity organs tissues in mini-invasive surgery

    Get PDF
    At present, minimally invasive interventions become more widespread for treating hepatopancreatoduodenal area pathologies. However, new methods and approaches are necessary for obtaining more diagnostic information in real time. Several methods within the framework of "optical biopsy" concept are considered. The features and areas of application of each method are reviewed to find out which of them can be used in further studies to assess the possibility of intraoperative use in minimally invasive abdominal surgery. Preliminary measurements with fluorescence spectroscopy method have been performed at excitation wavelengths 365 nm and 450 nm. Areas of interest were common bile duct, gallbladder and liver abscess. In our opinion, the obtained results can be a basis for further research and provide a deeper understanding of pathological processes of abdominal cavity organs tissues
    corecore