14 research outputs found

    Effect of chloride on the chemical conversion of nitrate to nitrous oxide for δ15N analysis

    Get PDF
    We investigate the influence of chloride concentration on the performance of the chemical reduction method for measurement of the nitrogen isotopic ratio (δ15N) in NO3− in natural waters (McIlvin and Altabet, 2005). In this method, NO3− is first reduced to NO2− using activated cadmium metal, with further reduction to N2O using sodium azide in an acetic acid buffer. N2O is introduced into an isotope ratio mass spectrometer (IRMS) for isotopic measurement. Previously, it was recognized that the presence of halides was necessary for the speed and efficiency of the second step but not thought to be important for the first step. Whereas quantitative Cd reduction of NO3− to NO2− had been noted for seawater samples, here we report, for freshwater and low‐salinity (S 99%) reduction of NO3− to NO2− as well as stable δ15N values that closely matched expected values for standards (within 0.3‰ of standard value). The positive effect of NaCl is likely due to a decrease in free Cd2+ produced over the course of the reaction due to formation of CdCl2

    Contrasting biogeochemistry of nitrogen in the Atlantic and Pacific oxygen minimum zones

    Get PDF
    We present new data for the stable isotope ratio ofinorganic nitrogen species from the contrasting oxygen minimum zones (OMZs) of the Eastern Tropical North Atlantic, south of Cape Verde, and the Eastern Tropical South Pacific off Peru. Differences in minimum oxygen concentration and corresponding N-cycle processes for the two OMZs are reflected in strongly contrasting δ15N distributions. Pacific surface waters are marked by strongly positive values for δ15N-NO−3) reflecting fractionation associated withsubsurface N loss and partial NO−3 utilization. This contrasts with negative values in NO−3 depleted surface waters of the Atlantic which are lower than can be explained by N supply via N2 fixation. We suggest the negative values reflect inputs of nitrate, possibly transient, associated withdeposition of Saharan dust. Strong signals of N-loss processes in the subsurfacePacific OMZ are evident in the isotope and N2O data, both ofwhich are compatible with a contribution of canonical denitrification to overall N-loss. However the apparent N isotope fractionation factor observed is relatively low (ɛd=11.4 ‰) suggesting an effect of influence from denitrification in sediments. Identical positive correlation of N2O vs. AOU for waters with oxygen concentrations ([O2]<5 μmol l−1) in both regions reflect a nitrification source. Sharp decrease in N2O concentrations is observed in the Pacific OMZ due to denitrification under oxygen concentrations O2 <5 μmol l−1

    An eddy-stimulated hotspot for fixed nitrogen-loss from the Peru oxygen minimum zone

    Get PDF
    Fixed nitrogen (N) loss to biogenic N2 in intense oceanic O2 minimum zones (OMZ) accounts for a large fraction of the global N sink and is an essential control on the ocean's N budget. However, major uncertainties exist regarding microbial pathways as well as net impact on the magnitude of N-loss and the ocean's overall N budget. Here we report the discovery of a N-loss hotspot in the Peru OMZ associated with a coastally trapped mesoscale eddy that is marked by an extreme N deficit matched by biogenic N2 production, high NO2− levels, and the highest isotope enrichments observed so far in OMZ's for the residual NO3−. High sea surface chlorophyll (SSC) in seaward flowing streamers provides evidence for offshore eddy transport of highly productive, inshore water. Resulting pulses in the downward flux of particles likely stimulated heterotrophic dissimilatory NO3− reduction and subsequent production of biogenic N2. The associated temporal/spatial heterogeneity of N-loss, mediated by a local succession of microbial processes, may explain inconsistencies observed among prior studies. Similar transient enhancements of N-loss likely occur within all other major OMZ's exerting a major influence on global ocean N and N isotope budgets

    A review of nitrogen isotopic alteration in marine sediments

    Get PDF
    Key Points: Use of sedimentary nitrogen isotopes is examined; On average, sediment 15N/14N increases approx. 2 per mil during early burial; Isotopic alteration scales with water depth Abstract: Nitrogen isotopes are an important tool for evaluating past biogeochemical cycling from the paleoceanographic record. However, bulk sedimentary nitrogen isotope ratios, which can be determined routinely and at minimal cost, may be altered during burial and early sedimentary diagenesis, particularly outside of continental margin settings. The causes and detailed mechanisms of isotopic alteration are still under investigation. Case studies of the Mediterranean and South China Seas underscore the complexities of investigating isotopic alteration. In an effort to evaluate the evidence for alteration of the sedimentary N isotopic signal and try to quantify the net effect, we have compiled and compared data demonstrating alteration from the published literature. A >100 point comparison of sediment trap and surface sedimentary nitrogen isotope values demonstrates that, at sites located off of the continental margins, an increase in sediment 15N/14N occurs during early burial, likely at the seafloor. The extent of isotopic alteration appears to be a function of water depth. Depth-related differences in oxygen exposure time at the seafloor are likely the dominant control on the extent of N isotopic alteration. Moreover, the compiled data suggest that the degree of alteration is likely to be uniform through time at most sites so that bulk sedimentary isotope records likely provide a good means for evaluating relative changes in the global N cycle

    Present and future in SFB-754

    No full text

    Nitrogen Isotopes in OMZs

    No full text

    Does N2 Fixation in the Oligotrophic SE Pacific Influence N Isotopic Signals in the Peru-Chile OMZ?

    No full text
    residual nitrate. Through upwelling, phytoplankton assimilation, and downward particle flux, this signal is transferred to the underlying sediments and has been used to reconstruct past changes in denitrification and OMZ intensity in relation to climate change. However, there remain a number of impediments to quantitative interpretation of downcore δ15N records from OMZ’s with respect to past magnitude of N loss. One of these is knowledge of initial δ15N for nitrate prior to denitrification which cannot be assumed to be the modern oceanic average. In the case of the Peru-Chile OMZ, δ15N for nitrate in source waters from the Equatorial Undercurrent average 7‰ as compared to the oceanic average of ~5‰. This suggests processes external to the OMZ leading to isotopic enrichment such as partial phytoplankton nitrate utilization in the Subantarctic water mass formation region. In contrast, it has been surmised that initial δ15N for OMZ denitrification could be relatively low as a result of N2 fixation in geographically adjacent oligotrophic regions. High N2 fixation rates in the SE Pacifc Gyre are thought to be stimulated by low N/P waters upwelled from the Peru-Chile OMZ. As seen in the Sargasso Sea, subsurface remineralization of export production influenced by near-surface N2 fixation produces 15N-depleted nitrate in the subtropical mode water and the upper thermocline. Potentially, these SE Pacific gyre waters could mix back into the Peru-Chile OMZ at its southern boundary. We have investigated the relevance of such a phenomenon in the SE Pacific by examining samples collected during two CLIVAR repeat section (P6 and P18) which transected these highly oligotrophic water adjacent to the Peru-Chile OMZ in both the N-S and Ε-W directions. Surprisingly, nutrient data shows no positive subsurface nitrate anomaly as would be expected from significant rates of N2 fixation. Nitrate isotope data also shows no evidence of depleted values. In fact nitrate δ15N and δ18O in the upper 500 m are elevated (up to 10‰) and appear to be the result of subduction and advection of nitrate partially consumed at the surface in the vicinity of the subtropical front. At present, N2 fixation in the SE Pacific does not appear to be an important biogeochemical process and cannot be contributing a 15N-depleted signal to the Peru-Chile OM

    Comparison between silicon and nitrogen isotopes in the upwelling area off Peru

    No full text
    Abstract ID: 10946 PosterID: B1569 In this study we present the first direct comparison between dissolved stable silicon (δ³⁰Si(OH)₄) and nitrogen (δ¹⁵NO₃-) isotopes in the upwelling area off Peru to investigate biogeochemical processes and nutrient cycling in one of the globally largest Oxygen Minimum Zones (OMZ). Silicon and nitrogen isotopes in the euphotic zone of the open ocean are mainly influenced by utilization in the way that diatoms preferentially incorporate the lighter isotopes, whereas in regions with prevailing anoxic waters the nitrate isotope composition is also altered by other processes. Silicic acid limitation offshore is indicated by high NO₃-:Si(OH)₄ ratios (~15) leading to the highest δ³⁰Si(OH)₄ values (3.7‰) accompanied by high δ¹⁵NO₃- values (16‰). Due to upwelling and intense recycling of silicic acid on the shelf, surface samples show low δ³⁰Si(OH)₄ values around 2‰. Nitrate isotope compositions in surface waters differ from values expected from δ³⁰Si(OH)₄ suggesting that either N-loss (denitrification and/or anammox) processes cause enrichment of heavy N-isotopes in the source waters of the upwelling, or the utilization of different N species derived from N₂-fixation or the utilization of ammonia occurs
    corecore