24 research outputs found

    The Burst Cluster: Dark Matter in a Cluster Merger Associated with the Short Gamma Ray Burst, GRB 050509B

    Get PDF
    We have identified a merging galaxy cluster with evidence of two distinct sub-clusters. The X-ray and optical data suggest that the subclusters are moving away from each other after closest approach. This cluster merger was discovered from observations of the well localized short-duration gamma-ray burst (GRB), GRB 050509B. The Swift/Burst Alert Telescope (BAT) source position is coincident with a cluster of galaxies ZwCl 1234.0+02916. The subsequent Swift/X-Ray Telescope (XRT) localization of the X-ray afterglow found the GRB coincident with 2MASX J12361286+2858580, a giant red elliptical galaxy in the cluster. Deep multi-epoch optical images were obtained to constrain the evolution of the GRB afterglow, including a 27480s exposure in the F814W band with Hubble Space Telescope Advanced Camera for Surveys (ACS), among the deepest imaging ever obtained towards a known galaxy cluster in a single passband. We perform a weak gravitational lensing analysis, including mapping the total mass distribution of the merger system. Combined with Chandra X-ray Observatory and Swift/XRT observations, we investigate the dynamical state of the merger to probe the nature of the dark matter component. Our weak gravitational lensing measurements reveal a separation of the X-ray centroid of the western subcluster from the center of the mass and galaxy light distributions, similar to that of the famous "Bullet cluster". We conclude that the "Burst cluster" is another candidate merger system for determining the nature of dark matter and for studying the environment of short GRBs. We discuss connections between the cluster dynamical state and/or matter composition and compact object mergers, the leading model for the origin of short GRBs. Finally, we present results from a weak lensing survey based on archival Very Large Telescope (VLT) images in the areas of 5 other short GRBs.Comment: 17 pages, 7 figures, accepted by Ap

    Infrared and Optical Observations of GRB 030115 and its Extremely Red Host Galaxy: Implications for Dark Bursts

    Get PDF
    We present near-infrared (nIR) and optical observations of the afterglow of GRB 030115. Discovered in an infrared search at Kitt Peak 5 hours after the burst trigger, this afterglow is amongst the faintest observed in the R-band at an early epoch, and exhibits very red colors, with RK6R-K\approx 6. The magnitude of the optical afterglow of GRB 030115 is fainter than many upper limits for other bursts, suggesting that without early nIR observations it would have been classified as a ``dark'' burst. Both the color and optical magnitude of the afterglow are likely due to dust extinction and indicate that at least some optical afterglows are very faint due to dust along the line of sight. Multicolor {\it Hubble Space Telescope} observations were also taken of the host galaxy and the surrounding field. Photometric redshifts imply that the host, and a substantial number of faint galaxies in the field are at z2.5z \sim 2.5. The overdensity of galaxies is sufficiently great that GRB 030115 may have occurred in a rich high-redshift cluster. The host galaxy shows extremely red colors (R-K=5) and is the first GRB host to be classified as an Extremely Red Object (ERO). Some of the galaxies surrounding the host also show very red colors, while the majority of the cluster are much bluer, indicating ongoing unobscured star formation. As it is thought that much of high redshift star formation occurs in highly obscured environments it may be that GRB 030115 represent a transition object, between the relatively unobscured afterglows seen to date and a population which are very heavily extinguished, even in the nIR.Comment: 19 Pages. ApJ 2006, 647, 47

    The LOFAR Transients Pipeline

    Get PDF
    Current and future astronomical survey facilities provide a remarkably rich opportunity for transient astronomy, combining unprecedented fields of view with high sensitivity and the ability to access previously unexplored wavelength regimes. This is particularly true of LOFAR, a recently-commissioned, low-frequency radio interferometer, based in the Netherlands and with stations across Europe. The identification of and response to transients is one of LOFAR's key science goals. However, the large data volumes which LOFAR produces, combined with the scientific requirement for rapid response, make automation essential. To support this, we have developed the LOFAR Transients Pipeline, or TraP. The TraP ingests multi-frequency image data from LOFAR or other instruments and searches it for transients and variables, providing automatic alerts of significant detections and populating a lightcurve database for further analysis by astronomers. Here, we discuss the scientific goals of the TraP and how it has been designed to meet them. We describe its implementation, including both the algorithms adopted to maximize performance as well as the development methodology used to ensure it is robust and reliable, particularly in the presence of artefacts typical of radio astronomy imaging. Finally, we report on a series of tests of the pipeline carried out using simulated LOFAR observations with a known population of transients.Comment: 30 pages, 11 figures; Accepted for publication in Astronomy & Computing; Code at https://github.com/transientskp/tk

    How Special Are Dark Gamma-Ray Bursts: A Diagnostic Tool

    Full text link
    We present here a comprehensive study of the optical/near-infrared (IR) upper limits for gamma-ray bursts that have an X-ray afterglow. We have extrapolated the X-ray afterglows to optical wavelengths based on the physics of the fireball blast wave model (e.g. Rees & Meszaors 1992; Meszaros & Rees 1997), and compared these results with optical upper limits for a large sample of bursts. We find a small set of only three bursts out of a sample of 20 for which the upper limits are not compatible with their X-ray afterglow properties within the context of any blast wave model. This sparse sample does not allow us to conclusively determine the cause of this optical/near-IR deficit. Extinction in the host galaxy is a likely cause, but high redshifts and different afterglow mechanisms might also explain the deficit in some cases. We note that the three bursts appear to have higher than average gamma-ray peak fluxes. In a magnitude versus time diagram the bursts are separated from the majority of bursts with a detected optical/near-IR afterglow. However, two GRBs with an optical afterglow (one of which is highly reddened) also fall in this region with dark bursts, making it likely that dark bursts are at the faint end of the set of optically detected bursts, and therefore the dark bursts likely form a continuum with the bursts with a detected optical afterglow. Our work provides a useful diagnostic tool for follow-up observations for potentially dark bursts; applied to the events detected with the Swift satellite, it will significantly increase our sample of truly dark bursts and shed light upon their nature.Comment: 19 pages; accepted to Ap

    Prompt and Afterglow Emission Properties of Gamma-Ray Bursts with Spectroscopically Identified Supernovae

    Get PDF
    We present a detailed spectral analysis of the prompt and afterglow emission of four nearby long-soft gamma-ray bursts (GRBs 980425, 030329, 031203, and 060218) that were spectroscopically found to be associated with type Ic supernovae, and compare them to the general GRB population. For each event, we investigate the spectral and luminosity evolution, and estimate the total energy budget based upon broadband observations. The observational inventory for these events has become rich enough to allow estimates of their energy content in relativistic and sub-relativistic form. The result is a global portrait of the effects of the physical processes responsible for producing long-soft GRBs. In particular, we find that the values of the energy released in mildly relativistic outflows appears to have a significantly smaller scatter than those found in highly relativistic ejecta. This is consistent with a picture in which the energy released inside the progenitor star is roughly standard, while the fraction of that energy that ends up in highly relativistic ejecta outside the star can vary dramatically between different events.Comment: 55 pages including 23 figures and 8 tables. Accepted for publication in ApJ. Replaced with the accepted versio

    A Deep Search with HST for Late Time Supernova Signatures in the Hosts of XRF 011030 and XRF 020427

    Get PDF
    X-ray Flashes (XRFs) are, like Gamma-Ray Bursts (GRBs), thought to signal the collapse of massive stars in distant galaxies. Many models posit that the isotropic equivalent energies of XRFs are lower than those for GRBs, such that they are visible from a reduced range of distances when compared with GRBs. Here we present the results of two epoch Hubble Space Telescope imaging of two XRFs. These images taken approximately 45 and 200 days post burst reveal no evidence for an associated supernova in either case. Supernovae such as SN 1998bw would have been visible out to z ~1.5 in each case, while fainter supernovae such as SN 2002ap would have been visible to z ~ 1. If the XRFs lie at such large distances, their energies would not fit the observed correlation between the GRB peak energy and isotropic energy release, in which soft bursts are less energetic. We conclude that, should these XRFs reside at low redshifts (z<0.6z<0.6), either their line of sight is heavily extinguished, or they are associated with extremely faint supernovae, or, unlike GRBs, these XRFs do not have temporally coincident supernovae.Comment: 12 Pages, 4 Figures, accepted for publication in Ap

    Very Early Optical Afterglows of Gamma-Ray Bursts: Evidence for Relative Paucity of Detection

    Full text link
    Very early observations with the Swift satellite of gamma-ray burst (GRB) afterglows reveal that the optical component is not detected in a large number of cases. This is in contrast to the bright optical flashes previously discovered in some GRBs (e.g. GRB 990123 and GRB 021211). Comparisons of the X-ray afterglow flux to the optical afterglow flux and prompt gamma-ray fluence is used to quantify the seemingly deficient optical, and in some cases X-ray, light at these early epochs. This comparison reveals that some of these bursts appear to have higher than normal gamma-ray efficiencies. We discuss possible mechanisms and their feasibility for explaining the apparent lack of early optical emission. The mechanisms considered include: foreground extinction, circumburst absorption, Ly-alpha blanketing and absorption due to high redshift, low density environments, rapid temporal decay, and intrinsic weakness of the reverse shock. Of these, foreground extinction, circumburst absorption, and high redshift provide the best explanations for most of the non-detections in our sample. There is tentative evidence of suppression of the strong reverse shock emission. This could be because of a Poynting-flux-dominated flow or a pure non-relativistic hydrodynamical reverse shock.Comment: 22 pages, 5 figures. Accepted for publication in Ap

    A very energetic supernova associated with the gamma-ray burst of 29 March 2003

    Full text link
    Over the past five years evidence has mounted that long-duration (> 2 s) gamma-ray bursts (GRBs)--the most brilliant of all astronomical explosions--signal the collapse of massive stars in our Universe. This evidence was originally based on the probable association of one unusual GRB with a supernova, but now includes the association of GRBs with regions of massive star formation in distant galaxies, the appearance of supernova-like 'bumps' in the optical afterglow light curves of several bursts and lines of freshly synthesized elements in the spectra of a few X-ray afterglows. These observations support, but do not yet conclusively demonstrate, the idea that long-duration GRBs are associated with the deaths of massive stars, presumably arising from core collapse. Here we report evidence that a very energetic supernova (a hypernova) was temporally and spatially coincident with a GRB at redshift z = 0.1685. The timing of the supernova indicates that it exploded within a few days of the GRB, strongly suggesting that core-collapse events can give rise to GRBs, thereby favouring the 'collapsar' model.Comment: 19 pages, 3 figure
    corecore