83 research outputs found

    Relativistic and Radiative Energy Shifts for Rydberg States

    Full text link
    We investigate relativistic and quantum electrodynamic effects for highly-excited bound states in hydrogenlike systems (Rydberg states). In particular, hydrogenic one-loop Bethe logarithms are calculated for all circular states (l = n-1) in the range 20 <= n <= 60 and successfully compared to an existing asymptotic expansion for large principal quantum number n. We provide accurate expansions of the Bethe logarithm for large values of n, for S, P and circular Rydberg states. These three expansions are expected to give any Bethe logarithms for principal quantum number n > 20 to an accuracy of five to seven decimal digits, within the specified manifolds of atomic states. Within the numerical accuracy, the results constitute unified, general formulas for quantum electrodynamic corrections whose validity is not restricted to a single atomic state. The results are relevant for accurate predictions of radiative shifts of Rydberg states and for the description of the recently investigated laser-dressed Lamb shift, which is observable in a strong coherent-wave light field.Comment: 8 pages; RevTeX

    Magnetoresistance through a single molecule

    Full text link
    The use of single molecules to design electronic devices is an extremely challenging and fundamentally different approach to further downsizing electronic circuits. Two-terminal molecular devices such as diodes were first predicted [1] and, more recently, measured experimentally [2]. The addition of a gate then enabled the study of molecular transistors [3-5]. In general terms, in order to increase data processing capabilities, one may not only consider the electron's charge but also its spin [6,7]. This concept has been pioneered in giant magnetoresistance (GMR) junctions that consist of thin metallic films [8,9]. Spin transport across molecules, i.e. Molecular Spintronics remains, however, a challenging endeavor. As an important first step in this field, we have performed an experimental and theoretical study on spin transport across a molecular GMR junction consisting of two ferromagnetic electrodes bridged by a single hydrogen phthalocyanine (H2Pc) molecule. We observe that even though H2Pc in itself is nonmagnetic, incorporating it into a molecular junction can enhance the magnetoresistance by one order of magnitude to 52%.Comment: To appear in Nature Nanotechnology. Present version is the first submission to Nature Nanotechnology, from May 18th, 201

    Estimating rates of carriage acquisition and clearance and competitive ability for pneumococcal serotypes in Kenya with a Markov transition model.

    No full text
    BACKGROUND: There are more than 90 serotypes of Streptococcus pneumoniae, with varying biologic and epidemiologic properties. Animal studies suggest that carriage induces an acquired immune response that reduces duration of colonization in a nonserotype-specific fashion. METHODS: We studied pneumococcal nasopharyngeal carriage longitudinally in Kenyan children 3-59 months of age, following up positive swabs at days 2, 4, 8, 16, and 32 and then monthly thereafter until 2 swabs were negative for the original serotype. As previously reported, 1868/2840 (66%) of children swabbed at baseline were positive. We estimated acquisition, clearance, and competition parameters for 27 serotypes using a Markov transition model. RESULTS: Point estimates of type-specific acquisition rates ranged from 0.00025/d (type 1) to 0.0031/d (type 19F). Point estimates of time to clearance (inverse of type-specific immune clearance rate) ranged from 28 days (type 20) to 124 days (type 6A). For the serotype most resistant to competition (type 19F), acquisition of other serotypes was 52% less likely (95% confidence interval = 37%-63%) than in an uncolonized host. Fitness components (carriage duration, acquisition rate, lack of susceptibility to competition) were positively correlated with each other and with baseline prevalence, and were associated with biologic properties previously shown to associate with serotype. Duration of carriage declined with age for most serotypes. CONCLUSIONS: Common S. pneumoniae serotypes appear superior in many dimensions of fitness. Differences in rate of immune clearance are attenuated as children age and become capable of more rapid clearance of the longest-lived serotypes. These findings provide information for comparison after introduction of pneumococcal conjugate vaccine

    Attributable sources of community-acquired carriage of Escherichia coli containing ÎČ-lactam antibiotic resistance genes: a population-based modelling study

    Get PDF
    Background: Extended-spectrum ÎČ-lactamase-producing Escherichia coli (ESBL-EC), plasmid-mediated AmpC-producing E coli (pAmpC-EC), and other bacteria are resistant to important ÎČ-lactam antibiotics. ESBL-EC and pAmpC-EC are increasingly reported in animals, food, the environment, and community-acquired and health-care-associated human infections. These infections are usually preceded by asymptomatic carriage, for which attributions to animal, food, environmental, and human sources remain unquantified. Methods: In this population-based modelling study, we collected ESBL and pAmpC gene data on the Netherlands population for 2005–17 from published datasets of gene occurrences in E coli isolates from different sources, and from partners of the ESBL Attribution Consortium and the Dutch National Antimicrobial Surveillance System. Using these data, we applied an established source attribution model based on ESBL-EC and pAmpC-EC prevalence and gene data for humans, including high-risk populations (ie, returning travellers, clinical patients, farmers), farm and companion animals, food, surface freshwater, and wild birds, and human exposure data, to quantify the overall and gene-specific attributable sources of community-acquired ESBL-EC and pAmpC-EC intestinal carriage. We also used a simple transmission model to determine the basic reproduction number (R0) in the open community. Findings: We identified 1220 occurrences of ESBL-EC and pAmpC-EC genes in humans, of which 478 were in clinical patients, 454 were from asymptomatic carriers in the open community, 103 were in poultry and pig farmers, and 185 were in people who had travelled out of the region. We also identified 6275 occurrences in non-human sources, including 479 in companion animals, 4026 in farm animals, 66 in wild birds, 1430 from food products, and 274 from surface freshwater. Most community-acquired ESBL-EC and pAmpC-EC carriage was attributed to human-to-human transmission within or between households in the open community (60·1%, 95% credible interval 40·0–73·5), and to secondary transmission from high-risk groups (6·9%, 4·1–9·2). Food accounted for 18·9% (7·0–38·3) of carriage, companion animals for 7·9% (1·4–19·9), farm animals (non-occupational contact) for 3·6% (0·6–9·9), and swimming in freshwater and wild birds (ie, environmental contact) for 2·6% (0·2–8·7). We derived an R0 of 0·63 (95% CI 0·42–0·77) for intracommunity transmission. Interpretation: Although humans are the main source of community-acquired ESBL-EC and pAmpC-EC carriage, the attributable non-human sources underpin the need for longitudinal studies and continuous monitoring, because intracommunity ESBL-EC and pAmpC-EC spread alone is unlikely to be self-maintaining without transmission to and from non-human sources. Funding: 1Health4Food, Dutch Ministry of Economic Affairs, and the EU's Horizon-2020 through One-Health European Joint Programme.</p

    Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD

    Get PDF
    Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) represents the most common pathological subtype of FTLD. We established the international FTLD-TDP whole genome sequencing consortium to thoroughly characterize the known genetic causes of FTLD-TDP and identify novel genetic risk factors. Through the study of 1,131 unrelated Caucasian patients, we estimated that C9orf72 repeat expansions and GRN loss-of-function mutations account for 25.5% and 13.9% of FTLD-TDP patients, respectively. Mutations in TBK1 (1.5%) and other known FTLD genes (1.4%) were rare, and the disease in 57.7% of FTLD-TDP patients was unexplained by the known FTLD genes. To unravel the contribution of common genetic factors to the FTLD-TDP etiology in these patients, we conducted a two-stage association study comprising the analysis of whole-genome sequencing data from 517 FTLD-TDP patients and 838 controls, followed by targeted genotyping of the most associated genomic loci in 119 additional FTLD-TDP patients and 1653 controls. We identified three genome-wide significant FTLD-TDP risk loci: one new locus at chromosome 7q36 within the DPP6 gene led by rs118113626 (pvalue=4.82e-08, OR=2.12), and two known loci: UNC13A, led by rs1297319 (pvalue=1.27e-08, OR=1.50) and HLA-DQA2 led by rs17219281 (pvalue=3.22e-08, OR=1.98). While HLA represents a locus previously implicated in clinical FTLD and related neurodegenerative disorders, the association signal in our study is independent from previously reported associations. Through inspection of our whole genome sequence data for genes with an excess of rare loss-of-function variants in FTLD-TDP patients (n≄3) as compared to controls (n=0), we further discovered a possible role for genes functioning within the TBK1-related immune pathway (e.g. DHX58, TRIM21, IRF7) in the genetic etiology of FTLD-TDP. Together, our study based on the largest cohort of unrelated FTLD-TDP patients assembled to date provides a comprehensive view of the genetic landscape of FTLD-TDP, nominates novel FTLD-TDP risk loci, and strongly implicates the immune pathway in FTLD-TDP pathogenesis

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Improvement of quantitative microbiological risk assessment (QMRA) methodology through integration with gaenetic data

    No full text
    Abstract Quantitative microbiological risk assessment (QMRA) methodology aims to estimate and describe the transmission of pathogenic microorganisms from animals and food to humans. In microbiological literature, the availability of whole genome sequencing (WGS) data is rapidly increasing, and incorporating this data into QMRA has the potential to enhance the reliability of risk estimates. This study provides insight into which are the key pathogen properties for incorporating WGS data to enhance risk estimation, through examination of example risk assessments for important foodborne pathogens: Listeria monocytogenes (Lm), Salmonella, Campylobacter and Shiga toxin‐producing Escherichia coli. By investigating the relationship between phenotypic pathogen properties and genetic traits, a better understanding was gained regarding their impact on risk assessment. Virulence of Lm was identified as a promising property for associating different symptoms observed in humans with specific genotypes. Data from a genome‐wide association study were used to correlate lineages, serotypes, sequence types, clonal complexes and the presence or absence of virulence genes of each strain with patient's symptoms. We also investigated the effect of incorporating WGS data into a QMRA model including relevant genomic traits of Lm, focusing on the dose–response phase of the risk assessment model, as described with the case/exposure ratio. The results highlighted that WGS studies which include phenotypic information must be encouraged, so as to enhance the accuracy of QMRA models. This study also underscores the importance of executing more risk assessments that consider the ongoing advancements in OMICS technologies, thus allowing for a closer investigation of different bacterial subtypes relevant to human health
    • 

    corecore