22 research outputs found

    Salinity variations in the northern Coorong Lagoon, South Australia: Significant changes in the ecosystem following human alteration to the natural water regime

    Get PDF
    European settlement and drought have significantly impacted the hydrology of the Coorong, a shallow coastal lagoon complex in South Australia, which is part of a terminal wetland at the mouth of the River Murray. An increased salinity associated with lower water levels and progressive isolation from ocean flushes contributed to a severe decline in ecological diversity over the past decades. Here we have conducted a molecular and stable isotopic study of a sedimentary core from the northern Coorong Lagoon spanning more than 5000 years to investigate the recent palaeoenvironmental history of the ecosystem. Major alterations were evident in many biogeochemical parameters in sediments deposited after the 1950s coinciding with the beginning of intensified water regulations. The most prominent shift occurred in δ13C profiles of C21–C33n-alkanes from average values of −23.5‰ to an average of −28.2‰.Further changes included decreases in carbon preference index (CPI) and average chain length (ACL) of the n-alkane series as well as significant increases in algal (e.g. C20 HBI, long chain alkenes and C29-alkadiene) and bacterial (e.g. 13C depleted short chain n-alkanes and hopanoids, δ13C: −35.9‰ to −30.1‰) derived hydrocarbons. Long chain n-alkanes with a strong odd/even predominance as observed here are typically attributed to terrigenous plants. In the Coorong however, terrigenous input to sedimentary OM is only minor. Therefore changes in the before mentioned parameters were attributed to a source transition from a major contribution of macrophytes towards predominantly microalgae and bacteria.δD values of C21–C33n-alkanes showed a general trend towards more enriched values in younger sediments, indicating an overall rising salinity. However, the most pronounced positive shift in these profiles again occurred after the 1950s. Altogether this study demonstrates that the recent human induced changes of the Coorong hydrology, compounded by a severe drought led to an increase in salinity and alterations of primary production which have been much more significant than natural variations occurring throughout the Holocene over several thousands of years

    Microbial community structure mediates response of soil C decomposition to litter addition and warming

    Get PDF
    Microbial activity has been highlighted as one of the main unknowns controlling the fate and turnover of soil organic matter (SOM) in response to climate change. How microbial community structure and function may (or may not) interact with increasing temperature to impact the fate and turnover of SOM, in particular when combined with changes in litter chemistry, is not well understood. The primary aim of this study was to determine if litter chemistry impacted the decomposition of soil and litter-derived carbon (C), and its interaction with temperature, and whether this response was controlled by microbial community structure and function. Fresh or pre-incubated eucalyptus leaf litter (13C enriched) was added to a woodland soil and incubated at 12, 22, or 32 �C. We tracked the movement of litter and soilderived C into CO2, water-extractable organic carbon (WEOC), and microbial phospholipids (PLFA). The litter additions produced significant changes in every parameter measured, while temperature, interacting with litter chemistry, predominately affected soil C respiration (priming and temperature sensitivity), microbial community structure, and the metabolic quotient (a proxy for microbial carbon use efficiency [CUE]). The direction of priming varied with the litter additions (negative with fresh litter, positive with pre-incubated litter) and was related to differences in the composition of microbial communities degrading soil-C, particularly gram-positive and gram-negative bacteria, resulting from litter addition. Soil-C decomposition in both litter treatments was more temperature sensitive (higher Q10) than in the soil-only control, and soil-C priming became increasingly positive with temperature. However, microbes utilizing soil-C in the litter treatments had higher CUE, suggesting the longer-term stability of soil-C may be increased at higher temperature with litter addition. Our results show that in the same soil, the growth of distinct microbial communities can alter the turnover and fate of SOM and, in the context of global change, its response to temperature

    Soil organic matter decomposition and turnover in a tropical Ultisol: evidence from δ¹³C, δ¹⁵N and geochemistry

    Full text link
    Soil organic matter (SOM), leaf litter, and root material of an Ultisol from the tropical rainforest of Kakamega, Kenya, were analyzed for stable carbon (delta-13C) and nitrogen (delta-15N) isotopic values as well as total organic carbon (TOC) and total nitrogen (TN) contents in order to determine trends in SOM decomposition within a very well-developed soil under tropical conditions. In addition, we quantified mineralogy and chemistry of the inorganic soil fraction. Clay mineralogical variation with depth was small and the abundance of kaolin indicates intense weathering and pedoturbation under humid tropical conditions. The soil chemistry was dominated by silica, aluminium, and iron with calcium, potassium, and magnesium as minor constituents. The relative depletion of base cations compared with silica and aluminium is an indicator for intense weathering and leaching conditions over long periods of time. Depth profiles of delta-13C and delta-15N showed a distinct enrichment trend down profile with a large (average 13Delta-C = 5.0 per mil average 15Delta-N = 6.3 per mil) and abrupt offset within the uppermost 10-20 cm of the soil. Isotopic enrichment with depth is commonly observed in soil profiles and has been attributed to fractionation during decomposition. However, isotopic offsets within soil profiles that exceed 3 per mil are usually interpreted as a recent change from C4 to C3 dominated vegetation. We argue that the observed isotopic depth profiles along with data from mineralogy and chemistry of the inorganic fraction from the Kakamega Forest soil are a result of intense weathering and high organic matter turnover rates under humid tropical conditions.The Radiocarbon archives are made available by Radiocarbon and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202

    The influence of feedstock and production temperature on biochar carbon chemistry: a solid-state 13C NMR study

    Get PDF
    Solid-state 13C nuclear magnetic resonance (NMR) spectroscopy was used to evaluate the carbon chemistry of twenty-six biochars produced from eleven different feedstocks at production temperatures ranging from 350°C to 600°C. Carbon-13 NMR spectra were acquired using both cross-polarisation (CP) and direct polarisation (DP) techniques. Overall, the corresponding CP and DP spectra were similar, although aromaticity was slightly higher and observability much higher when DP was used. The relative size and purity of the aromatic ring structures (i.e. aromatic condensation) were also gauged using the ring current technique. Both aromaticity and aromatic condensation increased with increasing production temperature, regardless of the feedstock source. However, there were clear differences in these two measures for biochars produced at the same temperature but from different feedstocks. Based on a relationship previously established in a long-term incubation study between aromatic condensation and the mean residence time (MRT) of biochar, the MRT of the biochars was estimated to range from <260 years to >1400 years. This study demonstrates how the combination of feedstock composition and production temperature influences the composition of aromatic domains in biochars, which in turn is likely to be related to their recalcitrance and ultimately their carbon sequestration value

    The influence of feedstock and production temperature on biochar carbon chemistry: a solid-state 13C NMR study

    No full text
    Solid-state 13C nuclear magnetic resonance (NMR) spectroscopy was used to evaluate the carbon chemistry of twenty-six biochars produced from eleven different feedstocks at production temperatures ranging from 350°C to 600°C. Carbon-13 NMR spectra were acquired using both cross-polarisation (CP) and direct polarisation (DP) techniques. Overall, the corresponding CP and DP spectra were similar, although aromaticity was slightly higher and observability much higher when DP was used. The relative size and purity of the aromatic ring structures (i.e. aromatic condensation) were also gauged using the ring current technique. Both aromaticity and aromatic condensation increased with increasing production temperature, regardless of the feedstock source. However, there were clear differences in these two measures for biochars produced at the same temperature but from different feedstocks. Based on a relationship previously established in a long-term incubation study between aromatic condensation and the mean residence time (MRT) of biochar, the MRT of the biochars was estimated to range from <260 years to >1400 years. This study demonstrates how the combination of feedstock composition and production temperature influences the composition of aromatic domains in biochars, which in turn is likely to be related to their recalcitrance and ultimately their carbon sequestration value
    corecore