119 research outputs found

    Bioinformatic interrogation of expression array data to identify nutritionally regulated genes potentially modulated by DNA methylation

    Get PDF
    DNA methylation occurs at CpG dinucleotide sites within the genome and is recognised as one of the mechanisms involved in regulation of gene expression. CpG sites are relatively underrepresented in the mammalian genome, but occur densely in regions called CpG islands (CGIs). CGIs located in the promoters of genes inhibit transcription when methylated by impeding transcription factor binding. Due to the malleable nature of DNA methylation, environmental factors are able to influence promoter CGI methylation patterns and thus influence gene expression. Recent studies have provided evidence that nutrition (and other environmental exposures) can cause altered CGI methylation but, with a few exceptions, the genes influenced by these exposures remain largely unknown. Here we describe a novel bioinformatics approach for the analysis of gene expression microarray data designed to identify regulatory sites within promoters of differentially expressed genes that may be influenced by changes in DNA methylation

    Transcriptome analysis of peripheral blood mononuclear cells in human subjects following a 36 h fast provides evidence of effects on genes regulating inflammation, apoptosis and energy metabolism.

    Get PDF
    There is growing interest in the potential health benefits of diets that involve regular periods of fasting. While animal studies have provided compelling evidence that feeding patterns such as alternate-day fasting can increase longevity and reduce incidence of many chronic diseases, the evidence from human studies is much more limited and equivocal. Additionally, although several candidate processes have been proposed to contribute to the health benefits observed in animals, the precise molecular mechanisms responsible remain to be elucidated. The study described here examined the effects of an extended fast on gene transcript profiles in peripheral blood mononuclear cells from ten apparently healthy subjects, comparing transcript profiles after an overnight fast, sampled on four occasions at weekly intervals, with those observed on a single occasion after a further 24 h of fasting. Analysis of the overnight fasted data revealed marked inter-individual differences, some of which were associated with parameters such as gender and subject body mass. For example, a striking positive association between body mass index and the expression of genes regulated by type 1 interferon was observed. Relatively subtle changes were observed following the extended fast. Nonetheless, the pattern of changes was consistent with stimulation of fatty acid oxidation, alterations in cell cycling and apoptosis and decreased expression of key pro-inflammatory genes. Stimulation of fatty acid oxidation is an expected response, most likely in all tissues, to fasting. The other processes highlighted provide indications of potential mechanisms that could contribute to the putative beneficial effects of intermittent fasting in humans

    Differential protein expression of hippocampal cells associated with heavy metals (Pb, As, and MeHg) neurotoxicity::Deepening into the molecular mechanism of neurodegenerative diseases

    Get PDF
    Chronic exposure to heavy metals such as Pb, As, and MeHg can be associated with an increased risk of developing neurodegenerative diseases. Our in vitro bioassays results showed the potency of heavy metals in the order of Pb &lt;As &lt;MeHg on hippocampal cells. The main objective of this study was combining in vitro label free proteomics and systems biology approach for elucidating patterns of biological response, discovering underlying mechanisms of Pb, As, and MeHg toxicity in hippocampal cells. The omics data was refined by using different filters and normalization and multilevel analysis tools were employed to explore the data visualization. The functional and pathway visualization was performed by using Gene ontology and PathVisio tools. Using these all integrated approaches, we identified significant proteins across treatments within the mitochondrial dysfunction, oxidative stress, ubiquitin proteome dysfunction, and mRNA splicing related to neurodegenerative diseases. The systems biology analysis revealed significant alterations in proteins implicated in Parkinson's disease (PD) and Alzheimer's disease (AD). The current proteomics analysis of three metals support the insight into the proteins involved in neurodegeneration and the altered proteins can be useful for metal-specific biomarkers of exposure and its adverse effects.Significance: The proteomics techniques have been claimed to be more sensitive than the conventional toxicological assays, facilitating the measurement of responses to heavy metals (Pb, As, and MeHg) exposure before obvious harm has occurred demonstrating their predictive value. Also, proteomics allows for the comparison of responses between Pb, As, and MeHg metals, permitting the evaluation of potency differences hippocampal cells of the brain. Hereby, the molecular information provided by pathway and gene functional analysis can be used to develop a more thorough understanding of each metal mechanism at the protein level for different neurological adverse outcomes (e.g. Parkinson's disease, Alzheimer's diseases). Efforts are put into developing proteomics based toxicity testing methods using in vitro models for improving human risk assessment. Some of the key proteins identified can also potentially be used as biomarkers in epidemiologic studies. These heavy metal response patterns shed new light on the mechanisms of mRNA splicing, ubiquitin pathway role in neurodegeneration, and can be useful for the development of molecular biomarkers of heavy metals exposure.</p

    Impact of in Utero Folate Exposure on Dna Methylation and Its Potential Relevance for Later‐Life Health – Evidence from Mouse Models Translated to Human Cohorts

    Get PDF
    Scope: Persistent DNA methylation changes may mediate the effects of early-life exposures on later-life health. However, the human lifespan is challenging for prospective studies, therefore data from longitudinal studies are limited. Projecting data from mouse models of early-life exposure to existing human studies offers a potential tool to address this challenge. Methods and Results: C57BL/6J mice were fed low or normal folate diets before and during pregnancy and lactation. Genome-wide promoter methylation was measured in male offspring livers at 17.5 days gestation and 28 weeks. Eight promoters were concurrently hypermethylated by folate depletion in fetuses and adults (>1.10 fold-change;p<0.05). Processes/pathways potentially influenced by global changes, and function of these 8 genes, suggest neurocognitive effects. Human observational and randomized controlled trial data were interrogated for translational findings. Methylation at birth was inversely associated with maternal plasma folate in 6 of the genes (-1.15% to-0.16%/nmol/l;p<0.05), whilst maternal folic acid supplementation was associated with differential methylation of 4 of these genes in adulthood. Three CpGs were persistently hypermethylated with lower maternal folate (p = 0.04). Conclusion: Some persistent folate-induced methylation changes observed in mice were mirrored in humans. This demonstrates utility of mouse data in identifying human loci for interrogation as biomarkers of later-life health

    The BridgeDb framework: standardized access to gene, protein and metabolite identifier mapping services

    Get PDF
    BACKGROUND: Many complementary solutions are available for the identifier mapping problem. This creates an opportunity for bioinformatics tool developers. Tools can be made to flexibly support multiple mapping services or mapping services could be combined to get broader coverage. This approach requires an interface layer between tools and mapping services. RESULTS: Here we present BridgeDb, a software framework for gene, protein and metabolite identifier mapping. This framework provides a standardized interface layer through which bioinformatics tools can be connected to different identifier mapping services. This approach makes it easier for tool developers to support identifier mapping. Mapping services can be combined or merged to support multi-omics experiments or to integrate custom microarray annotations. BridgeDb provides its own ready-to-go mapping services, both in webservice and local database forms. However, the framework is intended for customization and adaptation to any identifier mapping service. BridgeDb has already been integrated into several bioinformatics applications. CONCLUSION: By uncoupling bioinformatics tools from mapping services, BridgeDb improves capability and flexibility of those tools. All described software is open source and available at http://www.bridgedb.org

    diXa: a data infrastructure for chemical safety assessment

    Get PDF
    Motivation: The field of toxicogenomics (the application of ‘-omics' technologies to risk assessment of compound toxicities) has expanded in the last decade, partly driven by new legislation, aimed at reducing animal testing in chemical risk assessment but mainly as a result of a paradigm change in toxicology towards the use and integration of genome wide data. Many research groups worldwide have generated large amounts of such toxicogenomics data. However, there is no centralized repository for archiving and making these data and associated tools for their analysis easily available. Results: The Data Infrastructure for Chemical Safety Assessment (diXa) is a robust and sustainable infrastructure storing toxicogenomics data. A central data warehouse is connected to a portal with links to chemical information and molecular and phenotype data. diXa is publicly available through a user-friendly web interface. New data can be readily deposited into diXa using guidelines and templates available online. Analysis descriptions and tools for interrogating the data are available via the diXa portal. Availability and implementation: http://www.dixa-fp7.eu Contact: [email protected]; [email protected] Supplementary information: Supplementary data are available at Bioinformatics onlin

    Subcutaneous Adipose Tissue and Systemic Inflammation Are Associated With Peripheral but Not Hepatic Insulin Resistance in Humans

    Get PDF
    Obesity-related insulin resistance (IR) may develop in multiple organs, representing different etiologies towards cardiometabolic diseases. We identified abdominal subcutaneous adipose tissue (ScAT) transcriptome profiles in relation to liver or muscle IR by means of RNA sequencing in overweight/obese participants of the DiOGenes cohort (n=368). Tissue-specific IR phenotypes were derived from a 5-point oral glucose tolerance test. Hepatic and muscle IR were characterized by distinct abdominal ScAT transcriptome profiles. Genes related to extracellular remodeling were upregulated in individuals with primarily hepatic IR, whilst genes related to inflammation were upregulated in individuals with primarily muscle IR. In line with this, in two independent cohorts, CODAM (n=325) and the Maastricht Study (n=685), an increased systemic low-grade inflammation profile was specifically related to muscle IR, but not to liver IR. We propose that increased ScAT inflammatory gene expression may translate into an increased systemic inflammatory profile, linking ScAT inflammation to the muscle IR phenotype. These distinct IR phenotypes may provide leads for more personalized prevention of cardiometabolic diseases. DiOGenes was registered at clinicaltrials.gov as NCT00390637
    corecore