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Abstract 

Scope: Persistent DNA methylation changes may mediate the effects of early-life exposures on later-

life health. However, the human lifespan is challenging for prospective studies, therefore data from 

longitudinal studies are limited. Projecting data from mouse models of early-life exposure to existing 

human studies offers a potential tool to address this challenge. Methods and Results: C57BL/6J mice 

were fed low or normal folate diets before and during pregnancy and lactation. Genome-wide 

promoter methylation was measured in male offspring livers at 17.5 days gestation and 28 weeks. 

Eight promoters were concurrently hypermethylated by folate depletion in fetuses and adults (>1.10 

fold-change;p<0.05). Processes/pathways potentially influenced by global changes, and function of 

these 8 genes, suggest neurocognitive effects. Human observational and randomized controlled trial 

data were interrogated for translational findings. Methylation at birth was inversely associated with 

maternal plasma folate in 6 of the genes (-1.15% to-0.16%/nmol/l;p<0.05), whilst maternal folic acid 

supplementation was associated with differential methylation of 4 of these genes in adulthood. 

Three CpGs were persistently hypermethylated with lower maternal folate (p=0.04). Conclusion: 

Some persistent folate-induced methylation changes observed in mice were mirrored in humans. 

This demonstrates utility of mouse data in identifying human loci for interrogation as biomarkers of 

later-life health. 
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Introduction 

The Developmental Origins of Health and Disease (DOHaD) hypothesis argues for a causal 

relationship between early-life environment and disease risk in later-life [1]. The majority of studies 

in the field have provided evidence for associations between early-life factors and cardiometabolic 

outcomes [2, 3], but the early-life environment may also shape other health outcomes [4-6]. 

Currently the mechanisms responsible for the observed relationships between early-life 

environment and later health outcomes are poorly understood. However, modulation of epigenetic 

marks, including DNA methylation, is a plausible mechanism mediating these relationships [7]. DNA 

methylation usually refers to the presence of a methyl group at a cytosine residue followed by a 

guanine in the DNA sequence (i.e. a CpG dinucleotide site). DNA methylation is an important 

mechanism of gene regulation through which methylation of CpG rich regions may inhibit binding of 

the regulatory machinery for transcription leading to gene silencing [7]. DNA methylation patterns 

are altered in response to a range of environmental cues [8, 9] and may therefore act as a mediator 

between environment, cell function and disease risk. Early-life development, from preconception to 

childhood, is a critical window characterized by DNA methylation changes, pronounced susceptibility 

to environmental factors and programming of epigenetic marks that may have long-lasting health 

effects [9-13]. Whilst transient epigenetic changes due to environmental factors during early 

development are likely to influence long-term health through structural and physiological changes, it 

is also plausible that epigenetic changes which are persistent across the life-course may be latent, 

and the impact of these revealed only at a later point in the life course [14]. Therefore, such 
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persistent epigenetic changes may influence health later in life, when their impact is triggered by 

other intrinsic or external factors such as the biological changes associated with ageing or due to the 

gradual biological impact of the accumulation of one or more environmental factors e.g. smoking or 

diet.  Currently, there are few studies where the required longitudinal data and/or biological 

samples are available to investigate persistent changes in methylation from birth to older adulthood 

in response to early-life exposures, and subsequent influence on health. Therefore, novel 

approaches must be developed to address these knowledge gaps. 

Adequate maternal folate consumption during pregnancy is essential for overall healthy fetal 

development. Folate depletion peri-conceptually and during early pregnancy is associated with 

increased risk of neural tube defects [15], where the brain and spinal cord fail to develop correctly, 

as well as isolated orofacial clefts and neurodevelopmental disorders [16]. Whilst maternal folate 

intake during pregnancy has been putatively associated with some early outcomes, i.e. child BMI 

[17],  asthma[18, 19], and cognitive or neurodevelopmental outcomes in both childhood [20] and 

early adulthood [21-23], overall the data are limited.  Moreover, there is a further lack of 

understanding of how maternal folate status during pregnancy may affect offspring health in later 

life.   

Since folate is a key source of methyl groups for synthesis of S-adenosyl methionine (SAM) – the 

universal methyl donor – it is a plausible candidate nutrient for the modulation of DNA methylation 

[9]. Indeed, many studies have demonstrated that maternal folate intake during pregnancy 

influences the offspring methylome [24-28]. However, to the best of our knowledge, no study has 

used genome-wide assessment to investigate if observed changes in methylation as a result of 

maternal folate depletion alone during pregnancy are likely to persist from development into 

adulthood, and therefore with potential to influence later-life health.  

Here we used a novel hypothesis-generating approach, guided by animal experimental data, to 

investigate the potential impact of altered DNA methylation in response to in utero folate exposure 
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for later-life health. In particular, we identified methylation changes in specific gene promotors that 

are likely to be persistent across the life-course and explored the biological processes and pathways 

that are likely to be persistently affected using data from previously established mouse models. We 

then used this ‘discovery’ phase to inform a translational ‘replication’ phase (Figure 1) in which we 

explored the relevance of the findings in a human setting.  To do so, we first analysed and compared 

data examining the influence of maternal folate depletion on offspring DNA methylation during 

development and in adulthood in a mouse model to uncover methylation changes, and biological 

pathways and processes potential affected by those methylation changes, mostly likely to be 

persistent across the life course. The use of animal models offers the advantage of vastly reducing 

the likelihood of confounding which is a concern for human (observational) epigenetic studies. 

However, to address question of translatability in a human context, we further aimed to determine 

whether findings from our mouse model regarding potentially persistent methylation changes in 

response to maternal folate are translatable to humans. Thus, in our translation ‘replication’ phase 

we examined data from two human studies, a meta-analysis and a randomised controlled trial (RCT), 

which investigated the relationships between maternal folate status/supplementation during 

pregnancy and DNA methylation of offspring at birth and in adulthood, respectively. 

 

Experimental Section 

Dosage Regimen 

All animal procedures were approved by the Newcastle University Ethics Review Committee and the 

UK Home Office (Project licence number 60/3979) and have been described previously [25, 26, 29, 

30]. Animals were housed in the Comparative Biology Centre, Newcastle University at 20-22°C and 

with 12h light and dark cycles. Fresh water was available ad libitum. Female C57BL/6J mice were 

allocated at random to either a low folate (0.4mg folic acid/kg diet) or normal folate powdered diet 
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(2mg folic acid/kg diet) offered ad libitum at a quantity of 6g/d/mouse. This regimen was maintained 

for 4 weeks prior to mating, during pregnancy and, in the case of adult offspring, during lactation 

until weaning. Diet compositions were modified from AIN-93G24 and have been described 

previously [29], with 2mg folic acid representing the standard mouse diet, and 0.4mg representing a 

depleted diet capable of sustaining pregnancy [31].  L-amino acids were used as a protein source.  All 

ingredients, other than folic acid, were included in both diets at the same concentrations to avoid 

potential confounding through other dietary factors. 

Mouse Tissue Collection 

Fetal samples: Animal husbandry, sample collection and confirmation of folate depletion [29] have 

been detailed previously. Briefly, at 17.5 days gestation, dams were killed for collection of fetal livers 

which were removed, weighed and snap frozen in liquid nitrogen and stored at -80°C until processed 

for DNA extraction.   

Adult samples: Animal husbandry, sample collection and confirmation of folate depletion [30] have 

been detailed previously. Briefly, adult offspring were killed at 28 weeks of age for tissue collection. 

The liver was removed, weighed and snap frozen in liquid nitrogen and stored at -80°C. Prior to 

extraction, livers were ground under liquid nitrogen to preserve DNA integrity and to ensure 

homogeneous cell population in subsequently extracted DNA samples. 

 

DNA extraction, methylated DNA immunoprecipitation (MeDIP) and DNA methylation array 

hybridisation from mouse liver samples 

Fetal liver DNA was extracted as described previously [25] from male whole fetal livers using Tri-

reagent (Sigma-Aldrich) as per manufacturer’s instructions. For 6 litters (n=3 per dietary group,) DNA 

was pooled for three male fetuses per litter (5 µg/fetus) prior to preparation for MeDIP. Adult liver 

DNA was extracted from 50 mg ground liver tissue from 24 adult males (n=12 per maternal dietary 
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group) using the E.Z.N.A.® Tissue DNA Kit in accordance with the manufacturer’s instructions. The 

MeDIP protocol has been described in detail elsewhere [32], and description of the protocol used 

and subsequent data analysis has previously been published for both fetal [25] and adult [26] 

samples. Resultant data (i.e. lists of gene promoters reported to have altered methylation in 

response to low maternal folate intake during early-life) from these publications were used for the 

subsequent analysis outlined below. 

 

Identification of genes with potentially persistent changes in methylation from development to 

adulthood in response to maternal folate depletion in the mouse liver  

Gene promoters identified as having differential methylation in response to maternal folate 

depletion in fetal and adult liver were compared using an online list comparison tool 

(http://jura.wi.mit.edu/bioc/tools/compare.php) with gene symbols as the common identifiers.  

Hypergeometric tests were carried out using the UCLA online calculator 

(https://systems.crump.ucla.edu/hypergeometric/index.php) to assess the probability that the 

observed overlapping changes in methylation were not due to a chance observation (p<0.05), with 

an n of 17,446 as the constant population size, i.e. the number of unique genes for which promoter 

CpG probes are present on the array.   

 

Gene ontology (GO) and pathway analysis of methylation data derived from mouse liver samples 

DAVID Bioinformatics Resources 6.8 [33] Functional Annotation tool was used (May 2020) to carry 

out gene ontology enrichment analysis and to investigate Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathways affected by maternal folate depletion through changes in DNA 

methylation in the fetal and adult liver, in separate analyses. The threshold for significance was set 

at p < 0.05 (uncorrected) for both Gene Ontology and KEGG pathway enrichment analysis. GO 
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processes and KEGG pathways below the threshold of significance were compared using an online 

list comparison tool (http://jura.wi.mit.edu/bioc/tools/compare.php) with GO and KEGG numbers as 

the common identifiers to find overlapping processes and pathways between fetal and adult 

samples.  

Identification of genes with differential DNA methylation associated with maternal folate status in 

human studies 

To investigate the association between maternal folate status and gene-specific DNA methylation in 

humans, we examined data from two epigenome-wide association studies (EWAS). The first EWAS is 

a meta-analysis examining the associations between maternal plasma folate status during pregnancy 

on DNA methylation in cord blood of 1,988 new-borns using the Infinium HumanMethylation450 

Beadchip array from two European birth cohorts (the Norwegian Mother and Child Cohort Study 

(MoBa) and the Generation R study) [24]. The second dataset was from the Aberdeen Folic Acid 

Supplementation Trial (AFAST), a randomised controlled trial of folic acid supplementation during 

pregnancy where DNA methylation was measured in 86 adult offspring. The trial, conducted in the 

late 1960s, used two doses of folic acid (0.2 and 5 mg/day vs placebo) during pregnancy, with 

intervention starting at antenatal booking at < 30 weeks gestational age [34]. Richmond and 

colleagues [35] followed up offspring who could be identified and consented at a mean age of 

47 years and collected saliva samples for subsequent Infinium HumanMethylation450 Beadchip 

array analysis. The EWAS analysis investigated associations between exposure to low dose and high 

dose folic acid supplementation in utero in relation to DNA methylation in adulthood. Four models 

were investigated: Model 1 – intervention (low and high dose) (n=43) vs placebo (n=43); Model 2 – 

placebo (n=43), low dose (n=20), high dose (n=23) in an ordinal model; Model 3 – low dose (n=20) 

vs. placebo (n=43); Model 4 – high dose (n=23) vs. placebo (n=43) [35].  
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Based on the genes identified through the mouse experiments described above, those with known 

human equivalents were selected for further exploration in the human datasets. We used summary 

statistic data from these epigenome-wide association studies to investigate the associations 

between maternal folate status or intake and DNA methylation for CpGs residing within 1500bp 

upstream of the transcription start site (TSS) of the target genes where data were available in both 

studies. Methylation differences at CpG sites surpassing p<0.05 are highlighted in the results. 

Hypergeometric tests were carried out using the online calculator to assess the probability that 

differences in methylation at CpG sites associated with maternal folate status or intake across both 

studies was not due to chance (p<0.05), accounting for the number of CpGs investigated. 
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Results 

Methylation changes in response to maternal folate depletion in murine liver  

We previously reported 333 and 201 gene promotors with altered methylation in response to 

maternal folate depletion in fetal [25] and adult [26] murine liver respectively. Comparison of these 

altered gene promoters between fetal and adult murine liver resulted in 8 overlapping genes, all of 

which displayed modest hypermethylation (as shown by a positive fold change in the range of 1.24-

1.43 and 1.10-1.25 for fetal and adult murine liver respectively) in response to maternal folate 

depletion in both fetal and adult mouse tissue (Table 1). A hypergeometric test suggests that this 

overlap is unlikely to be due to chance (p=0.039).  

 

Gene ontology and KEGG pathways related to methylation changes in response to maternal folate 

depletion in murine liver 

DNA methylation changes in response to maternal folate depletion were found to potentially 

influence 44 GO processes in the murine fetal liver, and 46 in the adult murine liver (see 

Supplementary Tables 1 & 2). Of these, six processes were common in both fetal and adult murine 

liver (Table 2) and five of these processes were interrelated, with ‘system processes’ as the overall 

parent term (Figure 2). For all daughter processes, the genes with altered methylation in response to 

maternal folate in either the fetal or adult murine liver, were all also present in the parent term (see 

supplementary tables for details of genes affected in each GO term). Moreover, the majority of 

affected genes in these processes encode olfactory receptors (see supplementary tables). These G-

protein coupled receptors[36] drive the changes in the sixth altered process i.e. the G-protein 

coupled receptor signaling pathway (Table 2).  When comparing the fetal and adult murine datasets, 

two genes were found in common between the processes i.e. Olfr33 and Olfr985. 
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KEGG pathway analysis highlighted 4 pathways in the murine fetal liver and 5 in the murine adult 

liver that may have been influenced by methylation changes in response to maternal folate 

depletion (Tables 3 and 4 respectively) though only 2 and 1, respectively, of these were within the 

set-imposed threshold for significance in fetal and adult liver respectively.  One pathway relating to 

“Olfactory Transduction”, was common to both fetal and adult liver (p<0.05 in both), which aligns 

with the gene ontology analysis. For the murine fetal liver, of the 26 genes related to this pathway, 

12 were hypermethylated and 14 hypomethylated, with 25 genes coding for olfactory receptors. 

Whereas in the murine adult liver, of the 20 genes related to this pathway, 18 were 

hypermethylated and 2 hypomethylated, with all 20 genes coding for olfactory receptors. The same 

2 genes i.e. Olfr33 and Olfr985, that had been identified through the GO analysis were 

hypermethylated in both murine fetal and adult liver (Table 1).        

 

Influence of maternal folate status on target gene methylation at birth and in adulthood in human 

studies 

To determine whether there was a similar relationship between maternal folate status during 

pregnancy and gene-specific promoter methylation in humans, we investigated data from two 

human studies, one in which DNA methylation was measured at birth [24] and one in later 

adulthood [35] (mean age 47). Seven of the eight genes that had persistent methylation changes in 

murine liver in response to maternal folate supply have human equivalents or homologues and 

therefore were assessed in this analysis. Whilst there was no equivalent human gene found for 

Olfr33, the human OR8D4 gene is 83% homologous with Olfr985, and therefore was included in this 

further investigated. As with the murine study, we investigated putative promoter methylation by 

focussing on CpGs residing within 1500bp of the transcription start sites (TSS) of the candidate genes 

(n=118 CpGs in total, see Supplementary Tables 3 and 4 for full list of CpGs and associated data from 

each study).  
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At birth, we found that methylation at 11 CpGs for the evaluated genes in cord blood (at least one in 

6 of the 7 gene promoters tested) was modestly associated with maternal plasma folate 

concentration during pregnancy (Table 5) at p<0.05. Each one nmol/l increase in maternal plasma 

folate concentration was associated with 0.16 – 1.15% reduction in methylation at these CpG sites 

(Table 5). This emulates the patterns observed in our animal model where lower maternal folate 

status was associated with higher offspring methylation at all 11 CpGs.  

 

Using data from the Aberdeen Folic Acid Supplementation Trial (AFAST) [35] which investigated DNA 

methylation in adult offspring of mothers who received folic acid supplementation (0.2 and 5 mg 

folic acid or placebo) during pregnancy, we found modest effects for 9 CpGs across 4 of the target 

gene promoters with significantly altered methylation (p<0.05) in at least one of the four models 

(Table 6). Six of the nine CpG sites were found to be associated with high dose folic acid (5mg) vs 

placebo. Seven of the nine CpGs were hypomethylated in response to supplementation in at least 

one model (Model 1-0.02 to – 1.66%; Model 2 -0.05 to -2.85%; Model 3 -0.02 to -3.34%; Model 4 -

0.09 to -4.55%). These findings mirror the direction of methylation change observed in both our 

mouse model and in human new-borns associated with maternal folate status that are reported 

above.  

 

Three of these CpGs (Table 7: cg01678833;TSPO, cg13160331;TSPO, cg09857513;WNT16) were 

hypomethylated in both new-borns and adults in relation to increased maternal folate status or 

intake, respectively, in pregnancy (Table 5 and Table 6).  We carried out a hypergeometric test to 

ascertain if the overlap between concordant methylation changes observed at birth and in 

adulthood were likely to be due to chance. With a total of 118 CpGs investigated, finding 11 



www.mnf-journal.com Page 13 Molecular Nutrition & Food Research 

 

 
This article is protected by copyright. All rights reserved. 
 

significant CpGs in one study and 9 significant CpGs in the second study, an overlap of one CpG 

between studies would be expected by chance. Our finding of 3 CpGs in common between studies 

suggests that this overlap is not due to chance (p=0.038 for hypergeometric test).  

 

Discussion  

Here we used a novel hypothesis-generating approach to investigate whether DNA methylation 

changes associated with maternal folate status or folic acid intake during development are likely to 

persist into adulthood. In addition, we investigated the potential for these changes to have 

relevance to, or be implicated in biological pathways related to, later-life health.  As such, we 

hypothesise that such epigenetic changes may be latent, and only manifest influencing health in 

later life in response to additional biological triggers as a result of ageing, or external factors such as 

environmental cues. Whilst many studies have demonstrated the influence of maternal folate status 

alone during pregnancy on DNA methylation in the offspring [24-28], to the best of our knowledge, 

none have used genome-wide analysis to investigate potentially persistent changes across the life 

course. Here we utilised data from a mouse model to uncover 8 genes which were modestly 

hypermethylated in both the fetal and adult liver in response to maternal folate depletion during 

pregnancy. Secondly, we found that the promotor regions of 6 of these genes were similarly 

hypermethylated in offspring at birth from human mothers with low folate status. Thirdly, at least 

one CpG site within four (TSPO, RPS16, WNT16, ART3) of the seven gene promoters was also 

modestly hypermethylated in the adult offspring of mothers in the placebo group compared with 

those given folate supplementation during pregnancy in the AFAST study. Furthermore, 3 CpGs in 

the promoters of two of the seven investigated genes (TSPO and WNT16) were modestly 

hypermethylated with lower folate exposure across both human studies i.e. at birth and in 

adulthood. This is the same direction of change that was observed in the mouse study in response to 

lower folate exposure. Hypergeometric tests suggest this finding is unlikely to be due to chance, 
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demonstrating that, whilst effect sizes were modest, maternal folate intake during pregnancy is 

likely to provoke persistent change in methylation across the life course, and thus may be a latent 

mechanism influencing health in later life. We therefore suggest that our findings on concomitantly 

directional methylation changes that were persistent across the life course in both mouse and 

human studies demonstrate the robustness of the relationship between maternal folate exposure 

and methylation of these loci, principally TSPO and WNT16. Thus, we propose that our novel 

approach is successful in identifying translatable findings from animal studies to human populations 

in the context of early life exposures. 

 

To investigate the plausible long-term health impacts of these potentially persistent methylation 

changes associated with maternal folate, we examined i) the biological processes and pathways 

predicted to be affected by overall promoter methylation changes in our mouse model and ii) the 

specific functions of the genes with persistent methylation changes in both the mouse model and 

human studies. Neurological system processes, sensory perception and sensory perception of smell 

were persistent GO processes affected by folate status or intake, whilst the only persistent KEGG 

pathway related to olfactory transduction.  Previously dysregulation of olfactory receptors and 

olfactory dysfunction have been associated with dementia or dementia risk in models of Alzheimer’s 

disease (AD) and human studies[37-41]. Interestingly, although outside of the scope of our 

workflow, several other olfactory receptor genes have altered promotor methylation at birth in 

response to maternal folate levels in the previous EWAS meta-analysis at FDR significance [24]. 

However, these genes did not have altered methylation in adulthood in response to maternal folate 

in the RCT [35], suggesting that methylation changes in these genes are unlikely to be persistent. 

This inference should be interpreted cautiously because the RCT may have been underpowered to 

detect DNA methylation changes in adulthood.  Therefore, we suggest that the role of maternal 
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folate intake during pregnancy on later life epigenetic profiles of genes encoding olfactory receptors 

warrants further investigation.   

 

Next we consider the biological roles of the proteins encoded by the genes that were 

hypermethylated with lower folate status in mouse and human studies (i.e. TSPO, RPS16, WNT16, 

ART3, PCDHB6 and PDLIM3).  Disruption of cell adhesion pathways involving Pcdhb6 occur in 

Ms5Yah mice which exhibit motor coordination deficits, and spatial learning and memory 

impairments [42]. In addition, there is evidence that Wnt16 is a key substrate through which 

cannabis extracts preserve memory and reduce learning impairment in a mouse model of 

Alzheimer’s disease [43]. Furthermore, evidence suggests that PDLIM3 is a genetic modifier of age at 

onset in Alzheimer’s disease [44], whilst the 18kDa translocator protein (i.e. TSPO, a marker of 

neuroinflammation), may be a predictive marker of amyloid pathology linked to Alzheimer’s disease  

[45].  We therefore postulate that the persistent methylation changes observed in our study may 

plausibly influence neurocognitive outcomes in later life via latent epigenetic marks. We hypothesise 

that the biological impact of these epigenetic marks may have delayed manifestation in response to 

subsequent triggers that may include the gradual biological impact of the accumulation of one or 

more environmental factors (e.g. smoking or diet) or due to other biological changes associated with 

ageing.  Indeed, epigenetic factors have been proposed as one of the key mechanisms in the ‘Latent 

Early-life Associated Regulation’ (LEARn) model of Alzheimer disease and dementia development 

[46] in which maternal nutrition plays a fundamental role in shaping the epigenetic landscape for 

cognitive function [47]. Therefore, we propose methylation of the genes that we have identified may 

serve as long term proxy markers of maternal folate status and, given the potential role of the 

identified genes in neurological processes, should be prioritised for investigation in relation to 

cognitive function in older adults. However, as far as we are aware, the required longitudinal data 

(i.e. maternal folate status, epigenetic data at birth and in later life and later life cognitive function) 
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that would be needed to test the hypothesis that maternal folate affects later life cognition through 

effects on DNA methylation that persist into adulthood, do not exist. Therefore, novel 

methodologies will be required to investigate the potential impact of maternal folate status on DNA 

methylation and cognitive function of offspring in later life. Having uncovered methylation of these 

loci as a highly plausible maternal folate-related biomarker, it should be feasible to test hypotheses 

about the relationship between methylation of these genes and cognitive function in older adults 

using a modified ‘meet in the middle’ approach[48]. Furthermore, two step Mendelian 

Randomisation[49], using genetic information as a surrogate for maternal folate-related 

methylation, could also be used to investigate if maternal folate influences later-life cognitive 

function via methylation of these loci.     

 

Here we have illustrated how focused examinations of a single nutrient exposure, which is possible 

in an animal model, may inform more targeted investigations in a human setting.  In human studies, 

this approach may help to reduce ‘noise’ from confounding factors that have potential to result in 

false positive associations. Similarly, in accordance with the Bradford-Hill criteria in assessing causal 

relationships, the coherence of findings between experimental and epidemiological studies increases 

the likelihood of an effect, and therefore may aid identification of false positives. Additionally, 

targeted studies that investigate a limited number of key loci reduces the requirement for stringent 

statistical rationalisation to account for multiple testing that, in epigenome-wide studies, may mask 

true positive associations. Therefore, a significant advantage of this approach is in increasing the 

plausibility in uncovering true associations for further study.  

 

One of the key outcomes of this study is proof-of-concept for the utility of mining data and samples 

collected from animal studies in informing targeted analyses in human cohorts. More specifically, 

this approach has the advantage of being able to being to address knowledge gaps relating to the 
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persistence of methylation change in response to early-life exposures for which the necessary 

human longitudinal data and biological samples are unavailable. Further strengths of this approach 

are in the ability to generate new hypotheses from previously generated data sets, whilst 

simultaneously identifying potentially key biomarkers for further study. Moreover, such secondary 

analyses of data from animal studies adds value to prior research and is in line with the 3Rs. 

It is pertinent to note the design of the animal study precluded the ability to assess pups from the 

same litter over time.  Likewise, data from human studies are from different cohorts and therefore 

do not allow direct longitudinal measurement of persistent methylation change. Hence, here we 

refer to concomitant changes as ‘potentially persistent’. A further limitation of the study was the 

inability to associate findings with any potential health related outcomes. Use of such 

retrospectively collected data from mouse models means that new hypotheses cannot be tested in 

the mice from which data were initially generated. Similarly, for human studies, relevant outcome 

data sets may not be collected or be publicly available to access.  

   

To conclude, the methodologies employed here maximised the utility of previously generated data, 

in line with the ethos of both the 3Rs and adding value in research, whilst simultaneously uncovering 

concomitant methylation changes between species in response to maternal folate during pregnancy 

that are likely to be persistent across the life-course and to influence health. As such, this approach 

facilitates research in areas where there are major knowledge gaps and for which the relevant data 

from longitudinal studies in humans are unavailable. Consequently, this work has generated novel 

hypotheses to be tested in future studies with the potential to provide predictive biomarkers related 

to health. The robustness of these findings suggest that this innovative approach could be used in 

other research contexts in future.   
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Table 1. Genes with altered methylation in both fetal and adult murine liver in response to maternal 

folate depletion during early development.  

 Fetal liver  Adult liver 

Gene symbol P-val Fold Change* P-val Fold Change* 

Art3 0.020 1.34 0.013 1.13 

Olfr33 0.039 1.31 0.024 1.25 

Olfr985 0.035 1.24 0.015 1.15 

Pcdhb6 0.006 1.43 0.036 1.13 

Pdlim3 0.019 1.41 0.044 1.10 

Rps16 0.037 1.30 0.005 1.11 

Tspo 0.016 1.31 0.033 1.15 

Wnt16 0.003 1.34 0.027 1.16 

*Differential DNA methylation fold change in response to low maternal folate compared to normal maternal 

folate 

 

 

Table 2. Gene Ontology processes predicted to be altered due to DNA methylation changes 

in response to maternal folate depletion in both the fetal and adult murine liver 

  Fetal liver  Adult liver 

GO ID GO Process Number of 

genes 

altered/number 

of genes in 

process 

P-val Number of 

genes 

altered/ 

number of 

genes in 

process 

P-val 

GO:0003008 system process 44/2696 0.036 45/2696 5.79E-06 



www.mnf-journal.com Page 23 Molecular Nutrition & Food Research 

 

 
This article is protected by copyright. All rights reserved. 
 

GO:0007186 G-protein coupled 

receptor signaling 

pathway 41/1919 4.76E-04 32/1919 2.44E-04 

GO:0007600 sensory perception 30/1691 0.037 35/1691 1.09E-06 

GO:0007606 sensory perception of 

chemical stimulus 25/1281 0.023 24/1281 4.13E-04 

GO:0007608 sensory perception of 

smell 25/1143 0.006 23/1143 2.15E-04 

GO:0050877 neurological system 

process 35/2077 0.044 40/2077 8.04E-07 

 

 

Table 3. KEGG pathways predicted to be altered due to DNA methylation changes in 

response to maternal folate depletion in the fetal murine liver 

KEGG ID KEGG Pathway Number of 

genes altered 

/ no of genes 

in pathway 

P-val Genes altered 

mmu04740 Olfactory transduction 26 / 1080 0.016 

OLFR985, OLFR963, OLFR130, PRKG1, 

OLFR784, OLFR692, OLFR656, OLFR800, 

OLFR722, OLFR557, OLFR558, OLFR531, 

OLFR341, OLFR1367, OLFR146, OLFR1308, 

OLFR598, OLFR1009, OLFR370, OLFR76, 

OLFR59, OLFR33, OLFR397, OLFR1023, 

OLFR878, OLFR53 

mmu04713 Circadian entrainment 5 / 98 0.059 GNGT2, GNAO1, ADCY6, GUCY1B3, PRKG1 

mmu04730 Long-term depression 4 / 61 0.063 PPP2R1A, GNAO1, GUCY1B3, PRKG1 

mmu04062 

Chemokine signaling 

pathway 7 / 196 0.073 
CCL11, CCL12, GNGT2, NCF1, ADCY6, CX3CR1, 

CRK 
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Table 4. KEGG pathways predicted to be altered due to DNA methylation changes in 

response to maternal folate depletion in the adult murine liver 

KEGG ID KEGG Pathway Number of 

genes altered 

/ no of genes 

in pathway 

P-val Genes altered 

mmu04740 Olfactory transduction 20 / 1080 0.006 

OLFR985, OLFR976, OLFR313, OLFR739, 

OLFR649, OLFR1378, OLFR1500, OLFR1423, 

OLFR1339, OLFR1377, OLFR1497, OLFR633, 

OLFR102, OLFR33, OLFR101, OLFR201, 

OLFR13, OLFR328, OLFR73, OLFR1408 

mmu00980 

Metabolism of 

xenobiotics by 

cytochrome P450 4 / 64 0.023 GSTM4, HSD11B1, ADH5, UGT1A1 

mmu04080 

Neuroactive ligand-

receptor interaction 7 / 285 0.056 
ADRB3, P2RX4, ADRB2, TSPO, AGTR1A, 

GLRA2, CHRNB4 

mmu05204 Chemical carcinogenesis 4 / 92 0.059 GSTM4, HSD11B1, ADH5, UGT1A1 

mmu04022 

cGMP-PKG signaling 

pathway 5 / 163 0.072 ADRB3, ADRB2, AGTR1A, MAP2K2, MYL9 

 

 

Table 5. CpG sites within 1500bp of the transcription start sites of 6 target genes at which 

methylation status in new-borns was associated (p<0.05) with maternal plasma folate status 

during pregnancy (original data from Joubert et al., 2016 [24]).  

CpG Coefficient* Standard 

error  

P-val# Gene symbol 

cg14530295 -0.0016 6.00E-04 0.007113 ART3 

cg26866168 -0.0115 0.0027 2.98E-05 PCDHB6 

cg16622906 -0.005 0.0021 0.01782 PCDHB6 

cg02515725 -0.0021 8.00E-04 0.0143 PDLIM3 
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cg14632696 -0.0053 0.0025 0.03146 PDLIM3 

cg20641794 -0.0054 0.0023 0.02195 RPS16 

cg13160331 -0.0046 0.0013 0.0004358 TSPO 

cg01678833 -0.0043 0.0016 0.008172 TSPO 

cg09857513 -0.0031 0.0011 0.006079 WNT16 

cg16868298 -0.0028 0.001 0.006452 WNT16 

cg25608490 -0.0026 0.0012 0.02599 WNT16 

*Coefficient represents methylation beta value 

#P-val not adjusted for multiple testing using the false discovery rate (FDR) due to targeted investigation  
Surpasses correction for multiple testing taking into account the 118 CpGs investigated 
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Table 6. CpG sites within 1500bp of the transcription start sites of 6 target genes at which 

methylation status in adulthood (mean age 47) was related (p<0.05) to maternal folate 

supplementation during pregnancy (original data from the AFAST study [35]).   

  Model 1 - intervention (low and 

highφ dose) vs placebo 

Model 2 - low dose, high dose 

and placebo (ordinal model) 

Model 3 - low dose vs placebo Model 4 - high dose vs 

placebo 

CpG Gene  Coef* SE  P-val* Coef* SE  P-val* Coef* SE  P-val* Coef* SE  P-val* 

cg01678833# TSPO -0.0041 0.0072 0.571 -0.0238 0.0119 0.049 -0.0084 0.0141 0.552 -0.0455 0.0136 0.002 

cg10822314 TSPO -0.0002 0.0002 0.398 -0.0005 0.0003 0.135 -0.0002 0.0004 0.546 -0.0009 0.0004 0.046 

cg13160331# TSPO -0.0012 0.0036 0.744 -0.0072 0.0060 0.235 -0.0023 0.0073 0.756 -0.0149 0.0073 0.046 

cg18487508 RPS16 -0.0034 0.0033 0.308 -0.0098 0.0055 0.079 -0.0033 0.0062 0.596 -0.0158 0.0070 0.027 

cg19813688 RPS16 -0.0015 0.0007 0.029 -0.0015 0.0012 0.190 -0.0027 0.0013 0.049 -0.0009 0.0013 0.524 

cg11628034 RPS16 0.0005 0.0014 0.720 0.0024 0.0023 0.310 -0.0006 0.0018 0.764 0.0062 0.0031 0.047 

cg22795239 WNT16 0.0042 0.0036 0.250 0.0101 0.0060 0.099 0.0090 0.0075 0.237 0.0155 0.0075 0.043 

cg09857513# WNT16 -0.0071 0.0043 0.104 -0.0101 0.0073 0.172 -0.0187 0.0084 0.029 -0.0071 0.0100 0.483 

cg14855841 ART3 -0.0166 0.0073 0.025 -0.0285 0.0123 0.024 -0.0334 0.0147 0.027 -0.0197 0.0176 0.269 

*Coefficient represents methylation beta value.  *P-val not FDR corrected due to targeted investigation  

#Altered methylation observed in newborns in relation to maternal plasma folate by Joubert et al., 2016[24] 

(Table 5). 
φ Low dose folate supplementation was 0.2mg per day and high dose 5mg per day. 
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Table 7. Genome annotation the 3 CpG sites identified in relation to maternal folate status or intake 

in new-borns as well as adults 

CpG Chromosome Position* Gene Gene group 

cg01678833 22 43547171 TSPO TSS1500 

cg13160331 22 43547217 TSPO TSS1500 

cg09857513 7 120969044 WNT16 TSS200; Body 

*based on genome build 37 

 

 

 

 

 

 

 

 

 

 

Figure 1. Study overview. In the initial discovery phase of the study, data generated from our 

previously published mouse model of folate depletion in pregnancy were used to establish a) genes 

with altered methylation in response to maternal folate depletion in both the fetal and adult liver, 

and therefore most likely to be persistently changed b) potential biological pathways and processes 
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that may have been influenced by the combination of ‘transient’ and ‘persistent’ methylation 

changes in response to maternal folate depletion in the fetal and adult liver separately and c) which 

biological pathways and processes are likely to be ‘persistently’ altered in response to overall 

methylation changes observed in response to maternal folate depletion. This therefore is the 

hypothesis-generating phase, whereby investigating the function of the genes with persistently 

altered methylation coupled with understanding of the probable ‘persistent’ biological effects offers 

insight into the potential health outcomes for future investigation. In the second translational 

‘replication’ phase, we investigated if the potentially persistent methylation change observed in our 

mouse model are relevant in a human context. To do so, we utilised methylation data from a meta-

analysis and a randomised controlled trial (RCT), which investigated the relationships between 

maternal folate status/supplementation during pregnancy and DNA methylation of offspring at birth 

and in adulthood, respectively. 
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Figure 2. Flow diagram depicting the relationships between overlapping GO processes related to 

methylation changes in response to maternal folate depletion in murine fetal and adult liver. The 

boxes marked A and B connected by an arrow represent the relationship between the GO process 

i.e. in this diagram this represent that GO:0007608 – sensory perception of smell is a GO:0007606 – 

sensory perception of chemical. Therefore, here the ‘parent’ term overall is GO:0003008 – system 

process, with the downstream ‘daughter’ processes being the next level of depth regarding the exact 

biological process affected. Modified from QuickGO (https://www.ebi.ac.uk/QuickGO). Whilst all 

genes altered on daughter processes were also observed on parent processes, parent process had 

additional altered genes. 

https://www.ebi.ac.uk/QuickGO


www.mnf-journal.com Page 30 Molecular Nutrition & Food Research 

 

 
This article is protected by copyright. All rights reserved. 
 

 

  

 

 

 

 

 

 

 

 

Methylation refers to DNA markers responsible for gene-activation. We investigated if 

methylation changed in response to maternal folate intake during pregnancy. Eight genes had 

increased (hyper)methylation in fetal and adult mouse liver in response to maternal folate 

depletion. In humans, two of these genes were consistently hypermethylated with lower folate 

during pregnancy, the function of which suggests implications for cognition.  
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