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Obesity-related insulin resistance (IR) may develop in
multiple organs, representing various etiologies for car-
diometabolic diseases. We identified abdominal subcu-
taneous adipose tissue (ScAT) transcriptome profiles in
liver or muscle IR by means of RNA sequencing in over-
weight or obese participants of the Diet, Obesity, and
Genes (DiOGenes) (NCT00390637, ClinicalTrials.gov)
cohort (n 5 368). Tissue-specific IR phenotypes were
derived from a 5-point oral glucose tolerance test. He-
patic and muscle IR were characterized by distinct ab-
dominal ScAT transcriptome profiles. Genes related to
extracellular remodeling were upregulated in individuals
with primarily hepatic IR, while genes related to inflam-
mation were upregulated in individuals with primarily
muscle IR. In line with this, in two independent cohorts,
the Cohort on Diabetes and Atherosclerosis Maastricht
(CODAM) (n5 325) and theMaastricht Study (n5 685), an
increased systemic low-grade inflammation profile was
specifically related to muscle IR but not to liver IR. We
propose that increased ScAT inflammatory gene expres-
sion may translate into an increased systemic

inflammatory profile, linking ScAT inflammation to the
muscle IR phenotype. These distinct IR phenotypes may
provide leads for more personalized prevention of car-
diometabolic diseases.

Worldwide, over 2.1 billion people were overweight or
obese in 2013 (1). Overweight and obesity are major risk
factors for type 2 diabetes (2,3). Adipose tissue dys-
function, rather than excess fat mass per se, is frequently
associated with progression toward skeletal muscle, liver,
and whole-body insulin resistance (IR) (4,5).

Adipose tissue dysfunction is characterized by increased
adipocyte size (hypertrophy) rather than increased adipo-
cyte number (hyperplasia) (6), and this seems to be
associated with impairments in adipose tissue lipid buff-
ering capacity (7). In addition, expanded adipose tissue
mass is accompanied by an increased production and
secretion of proinflammatory cytokines, chemokines,
and adipokines (8,9). Both systemic lipid overflow and
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low-grade inflammation are thought to contribute to the
development of IR in skeletal muscle and liver (10).

Whole-body IR reflects defective insulin action in major
metabolic organs, such as skeletal muscle, liver, brain, and
adipose tissue, and has long been known to precede the
development of cardiometabolic diseases (10). IR can develop
simultaneously in multiple organs, but the severity may vary
between organs. For instance, impaired fasting glucose and
impaired glucose tolerance may represent distinct prediabetic
phenotypes, which are characterized by more pronounced
hepatic or muscle IR, respectively (11). In line with this,
altered skeletal muscle fatty acid handling as well as more
pronounced peripheral IR have been observed in individuals
with impaired glucose tolerance compared with individuals
with impaired fasting glucose (12,13). Moreover, the severity
of IR at the tissue level may contribute to the differential
response to lifestyle and pharmacological interventions. In-
deed, physical activity has been shown to mainly target
skeletal muscle insulin sensitivity (14), while metformin
treatment might have more pronounced effects on hepatic
insulin sensitivity (15). Moreover, a low-fat, high–complex
carbohydrate diet may result in a more pronounced increase
in the disposition index in individuals with prediabetes
with hepatic IR, while a Mediterranean diet may have
more beneficial effects in individuals with muscle IR (16).

Analysis of gene expression in subcutaneous adipose
tissue (ScAT) may help to elucidate the pathways and
mechanisms that link adipose tissue function to tissue-
specific IR. Previous studies have shown significant dysreg-
ulation in the ScAT transcriptome in obesity and IR (17).
For instance, Elbein et al. (18) found that ScAT inflammatory
and cell cycle–regulatory pathways were upregulated in
individuals with whole-body IR compared with insulin-
sensitive BMI-matched individuals, while lipid metabolism
pathways were downregulated. In addition, Soronen et al.
(19) observed upregulation of inflammatory pathways and
downregulation of mitochondrial respiratory and lipid me-
tabolism pathways in obese women with whole-body IR. In
addition, recent transcriptome analyses of abdominal ScAT
during weight loss in individuals from the Diet, Obesity, and
Genes (DiOGenes) study highlighted the link between lipid
metabolism pathways and glycemic improvement (20).

Studies that focus on detailed characterization of
tissue-specific IR phenotypes are scarce, and it is currently
not known whether differential ScAT transcriptome pro-
files are related to more pronounced muscle or hepatic IR.
Identification and quantification of metabolic anomalies in
various IR phenotypes may provide direction for more
personalized lifestyle or pharmacological interventions in
the prevention and control of cardiometabolic diseases.
Here, we studied the ScAT transcriptome of overweight
and obese participants without diabetes from the DiOGenes
study (21), a large European multicenter dietary in-
tervention study. We analyzed baseline RNA sequenc-
ing data in abdominal ScAT from 368 individuals and
identified gene clusters that were associated with muscle
or hepatic IR. Subsequently, we investigated whether we

could confirm mechanisms suggested by ScAT transcriptome
findings by performing complementary analyses on systemic
inflammatory profiles in two independent human cohorts,
namely, CODAM (Cohort on Diabetes and Atherosclerosis
Maastricht) (22) and the Maastricht Study (23).

RESEARCH DESIGN AND METHODS

Study Design
DiOGenes is a multicenter, randomized, controlled dietary
intervention study that involved eight European countries.
Briefly, 938 overweight or obese adults without diabetes
(age 18–65 years, BMI 27–45 kg/m2, and blood fasting
glucose ,6.1 mmol/L) were included. More details about
this study have been described previously (21). For current
analyses, baseline data were used of 368 participants for
whom abdominal ScAT RNA sequencing and oral glucose
tolerance test (OGTT) data were available.

CODAM is a prospective, observational study on, among
other things, the natural progression of IR and glucose
tolerance. A total of 574 individuals (aged .40 years) were
included from a large population-based cohort, as previously
described in detail (22). The Maastricht Study is a large
population-based cohort (participants aged 40–75 years)
that is enriched with participants with type 2 diabetes and
that focuses on the etiology of type 2 diabetes, its classic
complications, and its emerging comorbidities (23). The
analyses described here include the baseline data of
325 CODAM (BMI .25 kg/m2) and 685 Maastricht Study
(BMI .27 kg/m2) overweight/obese participants without
diabetes for whom data on OGTT and systemic low-grade
inflammation were available.

For the multicenter DiOGenes study, the protocol was
approved by the ethics committee of each center/country.
The DiOGenes study in Maastricht as well as CODAM and
the Maastricht Study were approved by the local institu-
tional medical ethics committee (Maastricht University
Medical Center1), and the Maastricht Study was also
approved by the Minister of Health, Welfare and Sports of
the Netherlands (permit 131088-105234-PG). All partic-
ipants gave written informed consent. These studies
were carried out in accordance with the principles of
the Declaration of Helsinki.

Estimates of Tissue-Specific IR and Classification
of IR Subgroups
DiOGenes participants underwent a 5-point OGTT at base-
line. In short, after an overnight fast, venous blood was
sampled at baseline and after a 75-g flavored glucose load was
ingested. Blood samples were taken at 0, 30, 60, 90, and
120 min, and plasma was stored at 280°C until analysis to
determine glucose and insulin concentrations. CODAM par-
ticipants underwent a 4-point OGTT with blood samples
taken at 0, 30, 60, and 120 min. The Maastricht Study
participants underwent a 7-point OGTT with blood samples
taken at 0, 15, 30, 45, 60, 90, and 120 min. Muscle insulin
sensitivity and hepatic IR were estimated using the methods
of Abdul-Ghani et al. (24).
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The muscle insulin sensitivity index (MISI) was calculated
according to the following formula: MISI 5 (dG/dt)/mean
plasma insulin concentration during OGTT. Here, dG/dt is
the rate of decay of plasma glucose concentration during the
OGTT, calculated as the slope of the least square fit to the
decline in plasma glucose concentration from peak to nadir
(24). The decline in plasma glucose concentration in the
second part of the OGTT primarily reflects glucose uptake by
peripheral tissues, mainly skeletal muscle. This index has
been developed and validated against measures of peripheral
insulin sensitivity as assessed during a hyperinsulinemic-
euglycemic clamp using a stable isotope glucose tracer (24).

The hepatic IR index (HIRI) was calculated using the
square root of the product of the areas under the curve
(AUCs) for glucose and insulin during the first 30 min of
the OGTT, i.e., sqrt(glucose 0–30 [AUC in mg/dL∗h] ∗
insulin 0–30 [AUC in mU/mL∗h]). This index has been
developed and validated against the product of fasting
plasma insulin and endogenous glucose production during
a hyperinsulinemic-euglycemic clamp using a stable iso-
tope glucose tracer (24).

DiOGenes, CODAM, and Maastricht Study participants
were each divided into four groups based on the tertiles of
HIRI andMISI scores for each cohort (16). The lowest tertile
of MISI represented individuals with muscle IR; the highest
tertile of HIRI represented individuals with hepatic IR.
Accordingly, participants were categorized into one of
four groups: 1) no IR, 2) IR primarily in muscle (muscle
IR), 3) IR primarily in liver (liver IR), and 4) IR in both
muscle and liver (muscle/liver IR).

Adipose Tissue Biopsy, RNA Preparation, and RNA
Sequencing
In DiOGenes, needle biopsies of abdominal ScAT were
performed 6–8 cm lateral to the umbilicus under local
anesthesia; the biopsy specimens were snap-frozen in liquid
nitrogen and stored at280°C until analysis. Total RNA was
extracted from these abdominal ScAT specimens as pre-
viously described (25). For each sample, we used Genomic-
Alignments to retrieve the number of reads mapping onto
53,343 genes (GRCh37 assembly). Only reads with both
ends mapping onto a single gene were considered.

Statistical Analyses

Participant Characteristics
In DiOGenes, CODAM, and the Maastricht Study,
descriptive variables with a skewed distribution were
loge-transformed before further analyses. The phenotypic
differences between tissue-specific IR groups were assessed
using one-way ANOVA for continuous variables with
Bonferroni post hoc tests, adjusted for sex, and x2 test
for categorical variables. The threshold for statistical sig-
nificance was set at P , 0.05.

Differential RNA Expression Analyses
In DiOGenes, after alignment and determination of tran-
script abundance, we analyzed estimated raw count data for

53,343 genes and 368 samples in RStudio software (version
3.2). Differential expression analysis was performed in
the DESeq2 package (version 1.12.4) using default set-
tings (26). Prefiltering of genes with low counts was applied
by removing genes with a total of zero reads or one read.
The standard differential expression analysis steps are
wrapped into a single function, DESeq (26). The differential
expression analysis in DESeq2 implements a negative bi-
nomial generalized linear model with the tissue-specific IR
phenotypes (muscle IR, liver IR, and no IR), study center,
sex, BMI, and waist-to-hip ratio as covariates. Due to a small
number of men (n5 12) in the muscle IR group, we were not
able to stratify our results by sex. The DESeq2 model in-
ternally corrects for library size; no additional data normal-
izationwas applied. The result tables were generated using the
function results comparing the tissue-specific IR phenotypes
(liver IR vs. no IR, muscle IR vs. no IR). Furthermore, the
method fpkm was used from DESeq2 to calculate relative
expression of transcripts. We obtained the transcript lengths
using the Biostrings R package. The GRange transcript lengths
were added to the DESeq object through the use of the
rowRanges method. Then the fpkm method extracted the
values for fragments per kilobase of transcript per million
mapped reads.

In an additional analysis, including all participants,
MISI and HIRI were simultaneously included as continu-
ous independent variables in the model with gene expres-
sion as the dependent variable to assess their independent
effects. To allow for direct comparison of the effect
sizes, we also standardized b coefficients by calculating
their z scores. Study center, sex, BMI, and waist-to-hip
ratio were included as other covariates in the model.

Gene Ontology Analysis
Gene ontology (GO) analysis was performed using Gorilla
software (27). Applied settings were 1) organism, Homo
sapiens; 2) running mode, two unranked lists of genes
(target and background lists); 3) ontology, process; and 4)
P , 0.05. All significant genes (nominal P , 0.05) were
included (Supplementary Tables 1 and 2) and divided
into up- and downregulated genes to provide direction
for the involved biological processes, and this gave
four different sets of results. For each result, based on
Benjamini and Hochberg false discovery rate P values,
the top five biological processes were selected.

Pathway Analysis
Pathway analysis was performed with PathVisio 3.2.1. The
curated human pathway collection was obtained from
WikiPathways (version 20171116) (28), containing 344
pathways. An overrepresentation analysis was performed
with the RNA sequencing data set. The pathways were then
ranked based on a standardized difference score (z score).
Pathways were considered significantly changed when 1)
z score was .1.96, 2) permuted P was ,0.05, and 3) the
pathway contained three or more significantly different
genes (nominal P , 0.05).
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Association With Low-Grade Inflammation Score
In CODAM and the Maastricht Study, linear regression
analyses were performed with a low-grade inflammation
score as the independent variable and HIRI or MISI
(continuous variables) as the dependent variable (model
1). Skewed variables were loge-transformed. The low-grade
inflammation score was calculated by averaging the z
scores of eight inflammatory markers in CODAM (C-
reactive protein [CRP], interleukin [IL]-6, IL-8, serum
amyloid A [SAA], soluble intercellular adhesion molecule
1 [sICAM-1], tumor necrosis factor-a [TNF-a], ceruloplas-
min, and haptoglobin) and six markers in the Maastricht
Study (CRP, IL-6, IL-8, SAA, sICAM-1, TNF-a). Averaging
these markers of low-grade inflammation produces a ro-
bust estimate of the overall inflammatory state with
minimization of random error (29). To allow for direct
comparison of the effect sizes, we also standardized HIRI
and MISI by calculating their z scores. In model 2a, HIRI
was included as a covariate in analyses on MISI, and vice
versa, to assess the independent effects of tissue-specific
IR, and in model 2b, age, sex, BMI, and waist-to-hip ratio
were included as covariates. Finally, in model 3, the
covariates of model 2a and 2b were combined. All data
were analyzed using SPSS for Mac version 24.0 (SPSS Inc.,
Chicago, IL) and R statistical programming language (ver-
sion 3.3.3).

Data and Resource Availability
RNA expression data are available from the Gene Expres-
sion Omnibus under accession no. GSE95640 (20). Other
data are unsuitable for public deposition due to ethical
restrictions and privacy of participant data. Data are
available from the corresponding author for any interested
researcher who meets the criteria for access to confidential
data and upon reasonable request.

RESULTS

Characteristics of the DiOGenes Population
Table 1 shows the demographic and metabolic character-
istics of the DiOGenes participants according to their
tissue-specific IR phenotype. In the no-IR group, 68% of
participants were women. Participants in the liver-IR
group were less often women (47%; P 5 0.006), while
participants with muscle IR were more often women (82%;
P 5 0.027). Comparisons of other characteristics between
groups were adjusted for sex. Participants in the muscle/
liver-IR group had significantly larger waist circumference
and waist-to-hip ratio than those in the no-IR group. The
muscle/liver-IR group also had significantly larger waist
circumference, larger waist-to-hip ratio, and higher systolic
blood pressure than the muscle-IR group. Plasma triacylgly-
cerol concentrations were significantly higher in the liver-IR
and muscle/liver-IR groups than in those with no IR. Cho-
lesterol concentrations were highest in participants in the
liver-IR group, while HDL cholesterol was lowest in the
muscle/liver-IR group. Concentrations of the inflammatory
marker CRP were significantly higher in the participants in

the muscle/liver-IR group than in those with no IR. Insulin
concentrations were significantly higher in all groups than
in the no IR group. Previous studies have shown similar
characteristics for the various tissue-specific IR groups (16).

Extracellular Structure Organization Is Differentially
Regulated in the Liver-IR and No-IR Groups
We performed RNA sequencing on the abdominal ScAT to
assess transcriptome differences in adipose tissue in indi-
viduals with liver IR or muscle IR. The no-IR group was
used as reference, and the analyses were adjusted for study
center, sex, BMI, and waist-to-hip ratio. To gain insight
into the differentially expressed transcriptome in the
tissue-specific IR phenotypes, we performed GO enrich-
ment analyses focusing on biological processes. We iden-
tified 2,416 genes that were differentially expressed in
the liver-IR versus no-IR comparison (nominal P , 0.05),
with in total 1,221 upregulated and 1,195 downregulated
genes (Fig. 1 and Supplementary Table 1). The GO clas-
sifications with the strongest statistical significance for the
upregulated genes was “extracellular structure organiza-
tion” (including genes related to collagens, integrins, lam-
inins, and thrombospondins) and “mitotic cell cycle
process” (including genes related to cell division cycle
and kinesins) (Table 2 and Supplementary Table 5). In
additional analyses in which adipose tissue gene expres-
sion was the dependent variable, continuous HIRI was the
independent variable, and adjustments were made for
study center, sex, BMI, waist-to-hip ratio, and MISI,
similar significant associated genes (Supplementary Table
9) and GO terms (Supplementary Table 11) were found.

Subsequently, we included a pathway enrichment anal-
ysis using the WikiPathways human collection of curated
pathways. Eight significantly different pathways were
overrepresented in the liver-IR versus no-IR comparison,
with at least one gene with absolute fold change.1.2 and
genes with nominal P , 0.05 (Supplementary Table 7).
Pathways related to extracellular matrix (ECM) organiza-
tion (e.g., focal adhesion pathways) and mitotic cell cycle
(e.g., cell cycle) were among the most significantly differing
pathways in the comparison of the liver-IR and no-IR
groups (Figs. 2 and 3).

In the comparisons of both the liver-IR and muscle-IR
groups with the no-IR group, the GO classification with the
highest enrichment in downregulated genes was “regula-
tion RNA metabolic process” (Supplementary Tables 3 and
4), which was accompanied by enrichment of upregulated
genes in the “mitotic cell cycle process” (Table 2). These
data might indicate gene-specific translational repression
as a means of controlling the mitotic proteome, which may
complement posttranslational mechanisms for inactivat-
ing protein function (30).

Inflammatory Pathways Are Differentially Regulated in
the Muscle-IR and No-IR Groups
For the muscle-IR versus no-IR comparison, 3,716 genes
were differentially expressed (nominal P, 0.05), of which
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1,977 were upregulated and 1,739 were downregulated
(Fig. 1 and Supplementary Table 2). ScAT of individuals
with muscle IR was characterized by higher expression of
inflammatory genes. The GO terms with the highest
enrichment with upregulated genes in ScAT were “mitotic
cell cycle process” (including genes related to cell division
cycle and kinesins) (Table 2) and “immune system re-
sponse” (including genes related to several complement
factors and chemokine) (Table 2 and Supplementary Table
4). “Antigen processing and presentation” was highly
statistically significant as well (including genes related
to proteasome degradation and lysosomal cathepsins)
(Table 2 and Supplementary Table 4). Like the GO enrich-
ment analyses, WikiPathways-related inflammatory pathways

(e.g., microglia pathogen phagocytosis, IL-1, and megakar-
yocytes in the obesity pathway and complement activation
pathway) were predominant in the comparison of the
muscle-IR and no-IR groups (Figs. 2 and 3 and Supplementary
Table 8). In additional analyses in which the adipose tissue
gene expression was the dependent variable and the contin-
uous MISI was the independent variable, after adjusting for
study center, sex, BMI, waist-to-hip ratio, and HIRI we found
similar significantly associated genes (Supplementary Table
10) and GO terms (Supplementary Table 11). Thus, ScAT of
individuals with muscle IR is characterized by increased ex-
pression of genes involved in chemotaxis, complement
activation, and immune cell function related to lysosomal
(e.g., cathepsins) and ubiquitin-proteasomal degradation.

Table 1—Characteristics of DiOGenes participants

No-IR
(n 5 186)

Muscle-IR
(n 5 69)

Liver-IR
(n 5 53)

Muscle/liver-IR
(n 5 60) P

Female sex (%) 68 82 47 61 ,0.001

Age (years) 42 6 7 41 6 6 42 6 6 41 6 6 0.684

BMI (kg/m2) 33.9 6 4.6 35.0 6 4.3 34.7 6 4.8 35.7 6 4.4* 0.029

Waist (cm) 104.9 6 12.2 105.6 6 11.5 111.3 6 11.4 112.6 6 14.1* 0.001

Waist-to-hip ratio 0.91 6 0.09 0.90 6 0.08 0.96 6 0.08 0.96 6 0.10*# 0.018

SBP (mmHg) 123 6 15 123 6 12 128 6 14 130 6 11* 0.004

DBP (mmHg) 76 6 11 77 6 10 80 6 9 79 6 11 0.340

Fat-free mass (kg) 57.9 6 13.7 56.3 6 10.8 66.3 6 13.9* 61.8 6 10.8 0.019

Body fat (%) 39.1 6 8.8 42.0 6 6.3 36.3 6 8.1 39.9 6 8.0 0.153

Triacylglycerol (mmol/L) 1.2 6 0.5 1.4 6 0.6 1.6 6 0.7* 1.5 6 0.6* ,0.001

Cholesterol (mmol/L) 4.8 6 1.0 4.8 6 0.9 5.2 6 1.0 5.0 6 0.9 0.096

HDL (mmol/L) 1.3 6 0.3 1.2 6 0.3 1.2 6 0.2 1.1 6 0.3* 0.003

LDL (mmol/L) 3.0 6 0.9 2.9 6 0.8 3.3 6 0.8 3.2 6 0.8 0.165

NEFA (mmol/L) 656 6 309 739 6 415 734 6 474 657 6 318 0.201

CRP (mg/L) 2.6 (1.3–5.1) 3.8 (2.3–5.9) 2.9 (1.3–5.0) 4.7 (2.4–7.1)* 0.004

Glucose (mmol/L) 5.0 6 0.6 5.0 6 0.6 5.3 6 0.5 5.2 6 0.7 0.036

Insulin (mU/L) 6.8 (4.9–9.8) 9.4 (7.5–14.0)* 12.4 (9.8–17.2)* 17.1 (12.1–23.5)*#§ ,0.001

MISI (AU) 0.07 (0.05–0.11) 0.02 (0.00–0.03)*§ 0.05 (0.04–0.08)*# 0.02 (0.01–0.02)*§ ,0.001

HIRI (AU) 26.0 6 5.5 28.5 6 5.0*§ 43.2 6 8.7*# 46.8 6 12.0*#§ ,0.001

Data are mean6 SD (for normally distributed variables), median (interquartile range) (for skewed variables), or percentage (for categorical
variables). P values were obtained by using the Pearson x2 test for sex, and by ANOVA, adjusted for sex, for the other variables. Skewed
variables were loge-transformed before analysis. In addition, Bonferroni post hoc tests were performed. AU, arbitrary units; DBP, diastolic
blood pressure; NEFA, nonesterified fatty acids; SBP, systolic blood pressure. *P, 0.05 vs. the no-IR group; #P, 0.05 vs. the muscle-IR
group; §P , 0.05 vs. the liver-IR group.

Figure 1—Venn diagrams of number of significantly upregulated (A) and downregulated (B) genes (nominal P , 0.05) in comparisons
of the liver-IR and no-IR groups and of the muscle-IR and no-IR groups.
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Systemic Low-Grade Inflammation Is Associated With
Muscle IR in CODAM and the Maastricht Study
Following up on the transcriptome analyses, we hypoth-
esized that increased ScAT inflammatory gene expression,
as observed in the muscle-IR group, may lead to the
secretion of proinflammatory adipokines in the circula-
tion. Subsequently, a systemic proinflammatory profile
may induce peripheral insulin sensitivity. As systemic
inflammation markers were not available in DiOGenes,
we studied the relationship between systemic inflamma-
tion and either muscle or liver IR in two independent
cohorts, namely, CODAM and the Maastricht Study

(22,23). In these cohorts, data on systemic low-grade
inflammation and tissue-specific IR are available for 325
and 685 overweight/obese individuals without diabetes,
respectively (Supplementary Tables 12 and 13). In general,
participants in CODAM and the Maastricht Study had risk
profiles for cardiometabolic diseases similar to those of
DiOGenes participants but were less often women, slightly
older, and less obese (Supplementary Table 14).

A combined score of several plasma markers of low-
grade inflammation (which include adipose tissue–derived
factors including, among others, IL-6, IL-8, TNF-a, SAA,
sICAM, and CRP) was inversely associated with MISI in a linear

Figure 2—A heatmap representing the pathway enrichment analysis that applied the WikiPathways curated collection of human pathways.
The pathways are ranked on the basis of a standardized difference score (z score). z scores.0 indicate enrichment for significantly different
genes (blue gradients), and z scores,0 indicate an absence of enrichment for significantly different genes (white). Pathwayswere considered
significantly different when 1) z score was .1.96, 2) permuted P was ,0.05, and 3) three or more significantly different genes (nominal P ,
0.05) existed in the pathway. ECM, extracellular matrix; ID, inhibitor of DNA binding; NF, nuclear factor; TGF, transforming growth factor.
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regression analysis that was adjusted for HIRI (CODAM:
standardized b [stdb], 20.107 [P 5 0.028]; Maastricht
Study: stdß, 20.131 [P , 0.001]) (Table 3, model 2a).
Notably, the low-grade inflammation score was not sig-
nificantly associated with HIRI in a linear regression
analysis that was adjusted for MISI (CODAM: stdß,
0.065 [P 5 0.184]; Maastricht Study: stdß, 0.000 [P 5
0.995]) (Table 3, model 2a). After additional adjustments
for age, sex, BMI, and waist-to-hip ratio, the associa-
tion between low-grade inflammation and MISI was

maintained (CODAM: stdß, 20.051 [P 5 0.317]; Maas-
tricht Study: stdß,20.091 [P5 0.008]) (Table 3, model 3).
No significant sex interactions were observed for the
associations between the low-grade inflammation score
and MISI (Pinteraction 5 0.639) or HIRI (Pinteraction 5
0.982). Therefore, associations between low-grade inflam-
mation andMISI or HIRI were assessed in men and women
combined.

Finally, additional analyses in DiOGenes showed that in
adipose tissue the RNA expression levels of seven out of

Figure 3—Four large pathways from the WikiPathways curated collection of human pathways, with comprehensive information on
inflammation and extracellular matrix (ECM) remodeling, were selected and integrated into two networks. Visualizations were created
for each network: two diagrams representing the ECM remodeling processes in the comparison between the liver-IR and no-IR groups (A)
and the muscle-IR and no-IR groups (B), and two diagrams representing inflammatory processes in the comparison between the liver-IR and
no-IR groups (C) and the muscle-IR and no-IR groups (D). Only genes with absolute fold change.1.1 and a nominal P, 0.05 for the liver-IR
vs. no-IR comparison, the muscle-IR vs. no-IR comparison, or both were included. Pathway nodes are visualized as rounded rectangles and
genes as circles; the colors are based on their fold change. Gradients of blue indicate downregulation, gradients of red indicate upregulation,
and white represents unchanged genes. Genes that changed significantly (nominal P , 0.05) are indicated with a gray outline around the
circle representing the particular gene.
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the eight inflammatory genes that are included in the
inflammation score were indeed higher in those with
the muscle-IR than in those with no-IR (Supplementary
Table 15). For three individual genes (IL-6, sICAM, hapto-
globin), these differences were statistically significant. Such
consistent upregulation of the inflammatory marker genes
was not observed in adipose tissue of those with liver IR.

DISCUSSION

Here, we demonstrate distinct adipose tissue transcrip-
tome profiles in tissue-specific IR. We show that an altered
ECM gene expression profile in abdominal ScAT was
present in overweight and obese individuals with pro-
nounced hepatic IR. Furthermore, an inflammatory gene
expression profile was particularly present in individuals
with pronounced muscle IR and not with hepatic IR. We
propose that an increased systemic inflammatory profile is
a mechanism linking the increased expression of inflam-
matory genes in abdominal ScAT to muscle IR. In line with
this, in two independent human cohorts, we show
a relation between the combined score of plasma
markers of low-grade inflammation and muscle IR, but
not liver IR. Although the relationship between adipose
tissue inflammation and IR has previously been posed
(8), the findings in the present study extend these
previous observations by indicating the tissue-specific
nature of this relationship.

Increased abdominal ScAT inflammation appeared to be
a predominant phenotype in muscle-IR individuals. This
was mainly determined by upregulation of genes involved in
chemotaxis, complement activation, and immune cell func-
tion related to lysosomes (e.g., cathepsins) and ubiquitin-
proteasome. In recent years, several chemokines have been
reported to be of importance in the etiology of obesity-
associated inflammation and IR (31). Chemokines are crucial
for the attraction of leukocytes from the circulation into

tissues, including macrophages and T cells. For instance, it is
known that higher total leukocyte counts precede and predict
the incident risk of type 2 diabetes (32). Additionally, over-
representation of T-cell–recruiting and –activating genes is of
interest, given the recent implication of T-cell recruitment
in obesity-related adipose tissue inflammation and IR in
animal models (33) and humans (34), although T-cell
infiltration in humans is much less characterized (35).

Furthermore, the upregulation of lysosomal genes such
as cathepsins, and genes in the ubiquitin-proteasome path-
way by which many intracellular proteins are degraded, is in
line with the findings of previous studies and may point
toward increased removal of apoptotic adipocytes (36).
Moreover, complement factors (e.g., C1Q) are known to
enhance phagocytosis by linking apoptotic cells and phago-
cytes, and contribute to the rapid clearance of dead cells
(37). Notably, cell death is associated with increased im-
mune cell infiltration (e.g., macrophages) and local tissue
inflammation (38). Strong upregulation of ScAT C1Q is
consistent with previous reports on ScAT gene expression
in humans (19,39–42). C1Qa knockout mice were protected
from high-fat diet–induced adipose tissue inflammation,
systemic glucose intolerance, and hepatic IR (43). In
addition, obesity-related adipocyte death was slightly in-
creased in C1Qa knockout mice, implying that a reduction
in the efficacy of clearing dead adipocytes may reduce
macrophage inflammatory activation (43).

Although ScAT inflammation has been posed as a central
factor in the development of IR, our data show for the first
time that a ScAT inflammatory gene expression profile is
most pronounced in the muscle-IR phenotype. Secretion
media derived from ScAT explants of obese individuals have
been shown to impair insulin signaling in both human
myotubes (44,45) and hepatocytes (44). Furthermore, in-
tracellular organelles like inflammasomes and autophago-
somes in ScAT have been recognized in organ crosstalk and
IR, albeit in indirect and incompletely understoodways (46).

Table 3—Associations of plasma low-grade inflammation with MISI and HIRI

Model

CODAM,
BMI .25 kg/m2 (n 5 325)

The Maastricht Study,
BMI .27 kg/m2 (n 5 685)

b LGI* (95% CI) P b LGI# (95% CI) P

MISI
1 20.180 20.291 to 20.073 ,0.001 20.183 20.257 to 20.109 ,0.001
2a 20.107 20.205 to 20.011 0.028 20.131 20.193 to 20.068 ,0.001
2b 20.071 20.182 to 0.039 0.202 20.108 20.186 to 20.030 0.007
3 20.051 20.153 to 0.050 0.317 20.091 20.159 to 20.024 0.008

HIRI
1 0.138 0.031–0.244 0.012 0.099 0.024–0.174 0.010
2a 0.065 20.032 to 0.165 0.184 0.000 20.064 to 0.064 0.995
2b 0.046 20.059 to 0.150 0.394 0.031 20.045 to 0.107 0.418
3 0.021 20.078 to 0.120 0.678 20.022 20.088 to 0.043 0.504

b-Values are standardized regression coefficients and represent the change in MISI and HIRI according to the low-grade inflammation
score (LGI). Model 1 shows crude associations. Model 2a includes variables only mutually adjusted for HIRI or MISI, respectively. Model
2b includes variables only adjusted for age, sex, BMI, and waist-to-hip ratio. Model 3 includes variables from model 2b plus adjustment
for HIRI or MISI, respectively. *LGI score with eight markers: IL-6, IL-8, TNF-a, SAA, sICAM, CRP, haptoglobin, and ceruloplasmin.
#LGI score with six markers: IL-6, IL-8, TNF-a, SAA, sICAM, CRP.
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The fact that we only found a relationship between ScAT
inflammatory gene expression and muscle IR, not liver IR,
might be related to a differential in vivo blood supply to
both tissues. The liver may be more strongly affected by
portal vein supply and factors derived from the visceral
adipose tissue and the gut, while peripheral tissues like
skeletal muscle might be more affected by the peripheral
circulation. Indeed, as ScAT drains more systemically, this
could affect skeletal muscle IR more than hepatic IR.

We hypothesized that increased ScAT inflammatory
gene expression, as observed in the muscle-IR group, may
lead to the secretion of proinflammatory adipokines in the
circulation and a systemic proinflammatory profile inducing
subsequently peripheral insulin sensitivity. In line with the
adipose tissue transcriptome data, in two comparable
cohorts, CODAM and the Maastricht Study, we showed
that low-grade inflammation scores of plasma inflammatory
markers were inversely associated with muscle insulin sen-
sitivity (MISI), while we did not observe an association
between the systemic low-grade inflammation score and
hepatic IR (HIRI). These data provide support for the
hypothesis that the link between an inflammatory ScAT
gene expression profile, as found in DiOGenes, may translate
into an increased systemic inflammatory profile, thereby
explaining the link with peripheral insulin sensitivity.

In individuals with liver IR, increased ECM remodeling
in abdominal ScAT was a predominant phenotype in the
present study. The upregulation of genes related to ECM
organization in ScAT is in line with the previously reported
increased accumulation of ECM components in dysfunc-
tional adipose tissue in obesity, which may decrease ECM
flexibility and reduce adipose tissue plasticity by triggering
adipocyte necrosis (47). In general, abnormal collagen
deposition is tightly associated with increased local in-
flammation, characterized by infiltration by macrophages
and other immune cells (48). Nevertheless, we did not
observe a significant upregulation of ScAT inflammatory
genes in individuals with liver IR compared with no-IR
individuals. One explanation may be that our ScAT tran-
scriptome data might reflect simultaneous processes re-
lated to ECM remodeling and fibrosis in the liver, which
could in turn contribute to hepatic IR. Indeed, it has been
shown that hepatic IR is also closely associated with in-
creased ECM remodeling and fibrosis in the liver (49).

In this study, we were able to include large independent
human data sets from DiOGenes and cohort studies
(CODAM, the Maastricht Study). This included adipose
tissue transcriptome analysis by RNA sequencing as well as
detailed human phenotyping. The data from the multiple
5- to 7-point OGTTs, with glucose and insulin concen-
trations available, made it feasible to derive tissue-specific
IR phenotypes (16,24,50). The estimated MISI and HIRI
from OGTT results have been validated against gold stan-
dard hyperinsulinemic-euglycemic clamp studies (24) and
have been used previously in large cohort and intervention
studies (16,50). Nevertheless, contrary to standardized
clamp-derived insulin sensitivity measures, MISI and

HIRI may to some extent be determined by other biological
processes such as the rate of glucose absorption as well as
the incretin response. In addition, our data are adjusted for
sex and body composition and they show robust and
consistent associations between tissue-specific IR, ad-
ipose tissue transcriptome profiles, and systemic low-grade
inflammation. A limitation of this study is that we do not
have data regarding gene expression in visceral adipose
tissue, as previous studies reported strong associations
between hepatic IR and visceral adipose tissue (5).

To our knowledge, this study is the first to link the
adipose tissue transcriptome with tissue-specific IR in
a large population of overweight and obese individuals.
These data open new and exciting avenues showing dis-
tinct tissue-specific IR phenotypes related to the develop-
ment of type 2 diabetes and cardiovascular disease in
overweight and obese individuals. Our findings of differ-
ential adipose tissue transcriptome and systemic inflam-
matory profiles in tissue-specific IR may provide targets
and biomarkers for more tailored nutritional or pharma-
cological interventions in the prevention or treatment of
cardiometabolic disease. Indeed, there is evidence from
post hoc analyses that the response to nutritional inter-
vention may depend on IR phenotype, e.g., being more
insulin resistant at the level of the liver or skeletal muscle
(16). Future studies are urgently warranted in order to
obtain detailed insight into these differential metabolic
phenotypes as well as related biomarkers.
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