1,074 research outputs found

    Guided wave Generation in Elastic Layered Substrates with Piezoelectric Coatings and Patches

    Get PDF
    AbstractPiezoelectrically generated surface and pseudosurface acoustic waves are simulated and analyzed in the mathematical framework based on the integral representations and guided wave asymptotics. In addition to the abilities of the conventional modal analysis, the integral equation approach explicitly provides the amplitudes of waves generated by a specified source, making it possible to evaluate the wave energy transmitted from the source into the substrate and its distribution among the excited guided waves. Diamond based microdevices and piezoelectric patch actuators are considered as examples

    Crucial words for abelian powers

    Get PDF
    A word is "crucial" with respect to a given set of "prohibited words" (or simply "prohibitions") if it avoids the prohibitions but it cannot be extended to the right by any letter of its alphabet without creating a prohibition. A "minimal crucial word" is a crucial word of the shortest length. A word W contains an "abelian k-th power" if W has a factor of the form X_1X_2...X_k where X_i is a permutation of X_1 for 2<= i <= k. When k=2 or 3, one deals with "abelian squares" and "abelian cubes", respectively. In 2004 (arXiv:math/0205217), Evdokimov and Kitaev showed that a minimal crucial word over an n-letter alphabet A_n = {1,2,..., n} avoiding abelian squares has length 4n-7 for n >= 3. In this paper we show that a minimal crucial word over A_n avoiding abelian cubes has length 9n-13 for n >= 5, and it has length 2, 5, 11, and 20 for n=1, 2, 3, and 4, respectively. Moreover, for n >= 4 and k >= 2, we give a construction of length k^2(n-1)-k-1 of a crucial word over A_n avoiding abelian k-th powers. This construction gives the minimal length for k=2 and k=3. For k >= 4 and n >= 5, we provide a lower bound for the length of crucial words over A_n avoiding abelian k-th powers.Comment: 14 page

    Unrepairable substrates of nucleotide excision repair and their application to suppress the activity of this repair system

    No full text
    In the previous studies, the DNA with the bulky Fap-dC derivative was demonstrated to be a difficult substrate for the nucleotide excision repair (NER), a system which is involved in the removal of bulky lesions from DNA. This type of compounds could be of particular interest as possible selective NER, considerably reducing the potency of DNA repair due to competitive immobilization of protein factors involved in this process. This approach can be potentially useful to increase the efficiency of chemotherapy. Aim. To identify DNA structures containing multiple bulky adducts that can efficiently inhibit the nucleotide excision repair. Methods. Enzymatic DNA synthesis, PCR, NER-competent cell extract preparation, in vitro NER assay, HPLC. Results. The conditions for the synthesis of extended DNA containing multiple unrepairable lesions were established. A wide range of DNA structures containing modified nucleotides was obtained. All modified DNAs were shown to inhibit the in vitro activity of the NER system. The DNA structure that inhibits the NER activity with the highest efficiency was selected. Conclusions. The model DNA structures effectively inhibiting the activity of NER were found. The new data obtained here can potentially be used for both basic and applied research.Π£ Π½Π°ΡˆΠΈΡ… ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½Ρ–Ρ… дослідТСннях Π±ΡƒΠ»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‰ΠΎ Π”ΠΠš Π· ΠΎΠ±'Ρ”ΠΌΠ½ΠΈΠΌ ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΠΌ Fap-dC Ρ” складнорСпарованим субстратом для систСми Сксцизійної Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ†Ρ–Ρ— Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρ–Π² (Π•Ρ€Π½). Π—'єднання Ρ‚Π°ΠΊΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΡƒ ΠΌΠΎΠΆΡƒΡ‚ΡŒ становити особливий інтСрСс як ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ– сСлСктивні Ρ–Π½Π³Ρ–Π±Ρ–Ρ‚ΠΎΡ€ΠΈ систСми Π•Ρ€Π½, Π·Π½Π°Ρ‡Π½ΠΎ Π·Π½ΠΈΠΆΡƒΡŽΡ‡ΠΈ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ†Ρ–Ρ— Π”ΠΠš ΡˆΠ»ΡΡ…ΠΎΠΌ Π·Π²'язування Π±Ρ–Π»ΠΊΠΎΠ²ΠΈΡ… Ρ‡ΠΈΠ½Π½ΠΈΠΊΡ–Π², Π·Π°Π»ΡƒΡ‡Π΅Π½ΠΈΡ… Π΄ΠΎ Π΄Π°Π½ΠΎΠ³ΠΎ процСсу. Π¦Π΅ΠΉ ΠΏΡ–Π΄Ρ…Ρ–Π΄ ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†Ρ–ΠΉΠ½ΠΎ корисний для підвищСння СфСктивності Ρ…Ρ–ΠΌΡ–ΠΎΡ‚Π΅Ρ€Π°ΠΏΡ–Ρ—. ΠœΠ΅Ρ‚Π°. Π”Π°Π½Π΅ дослідТСння спрямованС Π½Π° ΠΏΠΎΡˆΡƒΠΊ Π”ΠΠš-структур, Ρ‰ΠΎ ΠΌΡ–ΡΡ‚ΡΡ‚ΡŒ ΠΌΠ½ΠΎΠΆΠΈΠ½Π½Ρ– ΠΎΠ±'Ρ”ΠΌΠ½Ρ– Π°Π΄Π΄ΡƒΠΊΡ‚ΠΈ, які Π· Π½Π°ΠΉΠ±Ρ–Π»ΡŒΡˆΠΎΡŽ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŽ ΠΌΠΎΠΆΡƒΡ‚ΡŒ ΠΏΡ€ΠΈΠ³Π½Ρ–Ρ‡ΡƒΠ²Π°Ρ‚ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ систСми. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈ. Π€Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½ΠΈΠΉ синтСз Π”ΠΠš, ΠŸΠ›Π , приготування Π•Ρ€Π½-ΠΊΠΎΠΌΠΏΠ΅Ρ‚Π΅Π½Ρ‚Π½ΠΈΡ… ΠΊΠ»Ρ–Ρ‚ΠΈΠ½Π½ΠΈΡ… Скстрактів, рСакція вирізання, Ρ‰ΠΎ ΠΊΠ°Ρ‚Π°Π»Ρ–Π·ΡƒΡ”Ρ‚ΡŒΡΡ Π±Ρ–Π»ΠΊΠ°ΠΌΠΈ Π•Ρ€Π½ in vitro, Π’Π•Π Π₯. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΏΡ–Π΄Π±Ρ–Ρ€ ΡƒΠΌΠΎΠ² синтСзу протяТних ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½ΠΈΡ… Π”ΠΠš Π· ΠΌΠ½ΠΎΠΆΠΈΠ½Π½ΠΈΠΌ Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Π½ΡΠΌ Π½Π΅Ρ€Π΅ΠΏΠ°Ρ€ΠΎΠ²Π°Π½ΠΎΠ³ΠΎ пошкодТСння Fap-dC. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎ ряд Π”ΠΠš-структур, Ρ‰ΠΎ ΠΌΡ–ΡΡ‚ΠΈΡ‚ΡŒ Π² своєму складі Ρ€Ρ–Π·Π½Ρƒ ΠΊΡ–Π»ΡŒΠΊΡ–ΡΡ‚ΡŒ ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΈΡ… Π»Π°Π½ΠΎΠΊ. Показано, Ρ‰ΠΎ всі ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Π”ΠΠš ΠΏΡ€ΠΈΠ³Π½Ρ–Ρ‡ΡƒΡŽΡ‚ΡŒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ систСми Π•Ρ€Π½ in vitro. ΠžΠ±Ρ€Π°Π½Π° Π”ΠΠš-структура, яка ΠΏΡ€ΠΈΠ³Π½Ρ–Ρ‡ΡƒΡ” NER Π½Π°ΠΉΠ±Ρ–Π»ΡŒΡˆ високою Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŽ. Висновки. ΠœΠΎΠ΄Π΅Π»ΡŒΠ½Ρ– Π”ΠΠš Π· Π½Π΅Ρ€Π΅ΠΏΠ°Ρ€ΠΎΠ²Π°Π½ΠΈΠΌΠΈ ΡƒΡˆΠΊΠΎΠ΄ΠΆΠ΅Π½Π½ΡΠΌΠΈ, Π·Π΄Π°Ρ‚Π½Ρ– високою Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŽ ΠΏΡ€ΠΈΠ³Π½Ρ–Ρ‡ΡƒΠ²Π°Ρ‚ΠΈ NER, ΠΌΠΎΠΆΡƒΡ‚ΡŒ розглядатися Π² якості Ρ–Π½Π³Ρ–Π±Ρ–Ρ‚ΠΎΡ€Ρ–Π² систСми Π•Ρ€Π½. ВиявлСні Π² Π΄Π°Π½Ρ–ΠΉ Ρ€ΠΎΠ±ΠΎΡ‚Ρ– закономірності ΠΏΠΎΡ‚Π΅Π½Ρ†Ρ–ΠΉΠ½ΠΎ ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π±ΡƒΡ‚ΠΈ використані для провСдСння як Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΈΡ…, Ρ‚Π°ΠΊ Ρ– ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½ΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ.Π’ Π½Π°ΡˆΠΈΡ… ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰ΠΈΡ… исслСдованиях Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π”ΠΠš с ΠΎΠ±ΡŠΠ΅ΠΌΠ½Ρ‹ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹ΠΌ Fap-dC являСтся Ρ‚Ρ€ΡƒΠ΄Π½ΠΎΡ€Π΅ΠΏΠ°Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ΠΌ субстратом для систСмы эксцизионной Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ†ΠΈΠΈ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² (ЭРН). БоСдинСния Ρ‚Π°ΠΊΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡ‚ΡŒ особый интСрСс ΠΊΠ°ΠΊ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Π΅ сСлСктивныС ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Ρ‹ систСмы ЭРН, Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ сниТая ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ†ΠΈΠΈ Π”ΠΠš ΠΏΡƒΡ‚Π΅ΠΌ связывания Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², Π²ΠΎΠ²Π»Π΅Ρ‡Π΅Π½Π½Ρ‹Ρ… Π² этот процСсс. Π­Ρ‚ΠΎΡ‚ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎ ΠΏΠΎΠ»Π΅Π·Π΅Π½ для ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ эффСктивности Ρ…ΠΈΠΌΠΈΠΎΡ‚Π΅Ρ€Π°ΠΏΠΈΠΈ. ЦСль.Π’Π΅ΠΊΡƒΡ‰Π΅Π΅ исслСдованиС Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΎ Π½Π° поиск Π”ΠΠš-структур, содСрТащих мноТСствСнныС ΠΎΠ±ΡŠΠ΅ΠΌΠ½Ρ‹Π΅ Π°Π΄Π΄ΡƒΠΊΡ‚Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ с наибольшСй ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΠΎΠ΄Π°Π²Π»ΡΡ‚ΡŒ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ систСмы. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π€Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΉ синтСз Π”ΠΠš, ПЦР, ΠΏΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ ЭРН-ΠΊΠΎΠΌΠΏΠ΅Ρ‚Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… экстрактов, рСакция вырСзания, катализируСмая Π±Π΅Π»ΠΊΠ°ΠΌΠΈ ЭРН in vitro, Π’Π­Π–Π₯. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ ΠΏΠΎΠ΄Π±ΠΎΡ€ условий синтСза протяТСнных ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½Ρ‹Ρ… Π”ΠΠš с мноТСствСнным Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ΠΌ Π½Π΅Ρ€Π΅ΠΏΠ°Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ поврСТдСния Fap-dC. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ ряд Π”ΠΠš-структур, содСрТащий Π² своСм составС Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ΅ количСство ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… звСньСв. Показано, Ρ‡Ρ‚ΠΎ всС ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π”ΠΠš ΠΏΠΎΠ΄Π°Π²Π»ΡΡŽΡ‚ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ систСмы ЭРН in vitro. Π’Ρ‹Π±Ρ€Π°Π½Π° Π”ΠΠš-структура, которая ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΠ΅Ρ‚ NER Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ высокой ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. ΠœΠΎΠ΄Π΅Π»ΡŒΠ½Ρ‹Π΅ Π”ΠΠš с Π½Π΅Ρ€Π΅ΠΏΠ°Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ΠΌΠΈ поврСТдСниями, способныС высокой ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΠΎΠ΄Π°Π²Π»ΡΡ‚ΡŒ NER, ΠΌΠΎΠ³ΡƒΡ‚ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒΡΡ Π² качСствС ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€ΠΎΠ² систСмы ЭРН. ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Π½Ρ‹Π΅ Π² настоящСй Ρ€Π°Π±ΠΎΡ‚Π΅ закономСрности ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для провСдСния Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ…, Π½ΠΎ ΠΈ ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½Ρ‹Ρ… исслСдований

    ΠžΡ†Π΅Π½ΠΊΠ° свойств ΠΊΠΎΡΡ‚Π½ΠΎΠ·Π°ΠΌΠ΅Ρ‰Π°ΡŽΡ‰ΠΈΡ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² Π½Π° основС ΠΏΠΎΠ»ΠΈΡΡ‚ΠΈΠ»Π΅Π½Π³Π»ΠΈΠΊΠΎΠ»ΡŒ Π΄ΠΈΠ°ΠΊΡ€ΠΈΠ»Π°Ρ‚Π° ΠΈ ΠΎΠΊΡ‚Π°ΠΊΠ°Π»ΡŒΡ†ΠΈΠ΅Π²ΠΎΠ³ΠΎ фосфата Π½Π° ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΌΠΎΠ½ΠΎΠΊΠΎΡ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π΄ΠΈΠ°Ρ„ΠΈΠ·Π°Ρ€Π½ΠΎΠ³ΠΎ Π΄Π΅Ρ„Π΅ΠΊΡ‚Π° Π±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠΉ кости крысы: ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ исслСдованиС

    Get PDF
    Background. The problem of bone defects replacement is relevant nowadays, that is why many scientists create new synthetic bone substitutes, but the ideal material has not been found so far. The aims of the study: 1) to determine the suitability of the monocortical defect model in the rat femur diaphysis with additional prophylactic reinforcement with a bone plate for assessing the biological properties of implanted materials using the commercially available ChronOS material as an example; 2) to assess of the osteoconductive properties of composite materials based on poly(ethylene glycol)diacrylate and octacalcium phosphate with architecture Kelvin and gyroid types on the developed model. Methods. A prospective study, level of evidence II. A monocortical defect of the rat femoral diaphysis (length 7 mm) was produced under anaesthesia in aseptic conditions and fixed with a polyetheretherketone plate and six titanium screws. In the control group, the defect was left empty. In other groups, blocks of one of three materials were implanted сhronOS and composites of poly(ethylene glycol)diacrylate and octacalcium phosphate with 3D-printed Kelvin and gyroid architectures. After 3 and 6 weeks, the rats were sacrificed, and histological examination of the defect zone was performed. The amount of newly formed bone tissue was histometricly assessed, followed by statistical processing of the results. Results. All rats have reached the planned endpoint, and there were no infectious complications or loss of fixation. Histological examination of the defect zone revealed minimal bone growth in the Control group, rather slow bone formation in the Gyroid group, and statistically significantly more pronounced bone formation in the pores of the materials in the Kelvin and Chronos groups. Conclusions. Bone defect in this model was not spontaneously filled with bone tissue and allowed us to study the biological properties of bone substitutes (the ability to biodegrade and osteoconductive properties). The osteoconductive properties of a composite material based on poly(ethylene glycol)diacrylate and octacalcium phosphate with a Kelvin architecture are higher than with a gyroid architecture and are comparable to that of the сhronOS.ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ. ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ° замСщСния Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² кости Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Π° Π² настоящСС врСмя, постоянно вСдутся поиски Π½ΠΎΠ²Ρ‹Ρ… синтСтичСских ΠΊΠΎΡΡ‚Π½ΠΎΠ·Π°ΠΌΠ΅Ρ‰Π°ΡŽΡ‰ΠΈΡ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ², ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΈΠ΄Π΅Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» Π½Π΅ Π½Π°ΠΉΠ΄Π΅Π½ Π΄ΠΎ сих ΠΏΠΎΡ€. Π¦Π΅Π»ΠΈ исслСдования: 1) ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ пригодности ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΌΠΎΠ½ΠΎΠΊΠΎΡ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π΄Π΅Ρ„Π΅ΠΊΡ‚Π° Π΄ΠΈΠ°Ρ„ΠΈΠ·Π° Π±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠΉ кости крысы с Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ профилактичСским Π°Ρ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ накостной пластины для ΠΎΡ†Π΅Π½ΠΊΠΈ биологичСских свойств ΠΈΠΌΠΏΠ»Π°Π½Ρ‚ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ коммСрчСски доступного ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° сhronOS; 2) ΠΎΡ†Π΅Π½ΠΊΠ° остСокондуктивных свойств ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² Π½Π° основС ΠΏΠΎΠ»ΠΈΡΡ‚ΠΈΠ»Π΅Π½Π³Π»ΠΈΠΊΠΎΠ»ΡŒ Π΄ΠΈΠ°ΠΊΡ€ΠΈΠ»Π°Ρ‚Π° ΠΈ ΠΎΠΊΡ‚Π°ΠΊΠ°Π»ΡŒΡ†ΠΈΠ΅Π²ΠΎΠ³ΠΎ фосфата с Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€ΠΎΠΉ КСльвина ΠΈ Ρ‚ΠΈΠΏΠ° Π³ΠΈΡ€ΠΎΠΈΠ΄ Π½Π° Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠœΠΎΠ½ΠΎΠΊΠΎΡ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΉ Π΄Π΅Ρ„Π΅ΠΊΡ‚ Π΄ΠΈΠ°Ρ„ΠΈΠ·Π° Π±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠΉ кости крыс Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠΌ 7 ΠΌΠΌ Π² Π΄Π»ΠΈΠ½Ρƒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΏΠΎΠ΄ Π½Π°Ρ€ΠΊΠΎΠ·ΠΎΠΌ Π² асСптичСских условиях ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΈ фиксировали полиэфирэфиркСтоновой пластиной ΠΈ ΡˆΠ΅ΡΡ‚ΡŒΡŽ Ρ‚ΠΈΡ‚Π°Π½ΠΎΠ²Ρ‹ΠΌΠΈ Π²ΠΈΠ½Ρ‚Π°ΠΌΠΈ. ΠšΡ€Ρ‹Ρ распрСдСляли случайным ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ Π½Π° Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹ ΠΏΠΎ 12 особСй Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ. Π’ Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ Ρƒ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… костный Π΄Π΅Ρ„Π΅ΠΊΡ‚ Π½Π΅ заполняли. Π£ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ Π₯ронос Π΄Π΅Ρ„Π΅ΠΊΡ‚ заполняли ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ‹ΠΌ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠΌ chronOS Π² Π²ΠΈΠ΄Π΅ полуцилиндричСского Π±Π»ΠΎΠΊΠ°, Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ КСльвин исслСдуСмым ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠΌ с Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€ΠΎΠΉ КСльвина, Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ Π“ΠΈΡ€ΠΎΠΈΠ΄ исслСдуСмым ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠΌ с Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€ΠΎΠΉ Ρ‚ΠΈΠΏΠ° Π³ΠΈΡ€ΠΎΠΈΠ΄. Π§Π΅Ρ€Π΅Π· 3 ΠΈ 6 Π½Π΅Π΄. крыс Π²Ρ‹Π²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΈΠ· экспСримСнта ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΈ гистологичСскоС исслСдованиС Π·ΠΎΠ½Ρ‹ Π΄Π΅Ρ„Π΅ΠΊΡ‚Π°. Π—Π°Ρ‚Π΅ΠΌ выполняли Π³ΠΈΡΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΎΡ†Π΅Π½ΠΊΡƒ количСства Π½ΠΎΠ²ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½ΠΎΠΉ костной Ρ‚ΠΊΠ°Π½ΠΈ с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ статистичСской ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΎΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ². Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π’ Ρ…ΠΎΠ΄Π΅ экспСримСнта всС ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Π΅ достигли ΠΏΠ»Π°Π½ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ, ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Π΅ ослоТнСния ΠΈ потСря фиксации зафиксированы Π½Π΅ Π±Ρ‹Π»ΠΈ. ΠŸΡ€ΠΈ гистологичСском исслСдовании Π·ΠΎΠ½Ρ‹ Π΄Π΅Ρ„Π΅ΠΊΡ‚Π° выявлСн ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ рост кости Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ, достаточно ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ кости Π² ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹ Π“ΠΈΡ€ΠΎΠΈΠ΄ ΠΈ статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΠΎ Π±ΠΎΠ»Π΅Π΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠ΅ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ костной Ρ‚ΠΊΠ°Π½ΠΈ Π² ΠΏΠΎΡ€Π°Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² Π² Π³Ρ€ΡƒΠΏΠΏΠ°Ρ… КСльвин ΠΈ Π₯ронос. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Разработанная модСль Π΄Π΅Ρ„Π΅ΠΊΡ‚Π° кости спонтанно Π½Π΅ заполняСтся костной Ρ‚ΠΊΠ°Π½ΡŒΡŽ ΠΈ позволяСт ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ биологичСских свойств костнопластичСских ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² (ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΊ Π±ΠΈΠΎΠ΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ ΠΈ остСокондуктивныС свойства). ΠžΡΡ‚Π΅ΠΎΠΊΠΎΠ½Π΄ΡƒΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅ свойства ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° Π½Π° основС ΠΏΠΎΠ»ΠΈΡΡ‚ΠΈΠ»Π΅Π½Π³Π»ΠΈΠΊΠΎΠ»ΡŒ Π΄ΠΈΠ°ΠΊΡ€ΠΈΠ»Π°Ρ‚Π° ΠΈ ΠΎΠΊΡ‚Π°ΠΊΠ°Π»ΡŒΡ†ΠΈΠ΅Π²ΠΎΠ³ΠΎ фосфата с Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€ΠΎΠΉ КСльвина Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ с Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€ΠΎΠΉ Ρ‚ΠΈΠΏΠ° Π³ΠΈΡ€ΠΎΠΈΠ΄, ΠΈ сопоставимы с Ρ‚Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ Ρƒ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° сhronOS

    Confirmation of the Double Charm Baryon Xi_cc+ via its Decay to p D+ K-

    Get PDF
    We observes a signal for the double charm baryon Xi_cc+ in the charged decay mode Xi_cc+ -> p D+ K- to complement the previously reported decay Xi_cc+ -> Lambda_c K- pi+ in data from SELEX, the charm hadro-production experiment (E781) at Fermilab. In this new decay mode we observe an excess of 5.62 events over an expected background estimated by event mixing to be 1.38+/-0.13 events. The Poisson probability that a background fluctuation can produce the apparent signal is less than 6.4E-4. The observed mass of this state is (3518+/-3)MeV/c^2, consistent with the published result. Averaging the two results gives a mass of (3518.7+/-1.7)MeV/c^2. The observation of this new weak decay mode confirms the previous SELEX suggestion that this state is a double charm baryon. The relative branching ratio Gamma(Xi_cc+ -> pD+K-)/Gamma(Xi_cc+ -> Lambda_c K- pi+) = 0.36+/-0.21.Comment: 11 pages, 6 included eps figures. v2 includes improved statistical method to determine significance of observation. Submitted to PL

    Production Asymmetry Measurement of High Xt Hadrons in pp Collisions at 40 GeV

    Full text link
    Single-spin asymmetries for hadrons have been measured in collisions of transversely-polarized 40 GeV/c proton beam with an unpolarized liquid hydrogen target. The asymmetries were measured for pi+-, K+-, protons and antiprotons, produced in the central region (0.02 < Xf < 0.10 and 0.7 < Pt < 3.4 GeV/c). Asymmetries for pi+-, K+- and antiprotons show within measurement errors the linear dependence on Xt and change a sign near 0.37. For protons negative asymmetry, independent of Xt has been found. The results are compared with those of other experiments and SU(6) model predictions.Comment: 25 pages (Latex), 12 Postscript figure

    Measurement of the Ds lifetime

    Get PDF
    We report precise measurement of the Ds meson lifetime. The data were taken by the SELEX experiment (E781) spectrometer using 600 GeV/c Sigma-, pi- and p beams. The measurement has been done using 918 reconstructed Ds. The lifetime of the Ds is measured to be 472.5 +- 17.2 +- 6.6 fs, using K*(892)0K+- and phi pi+- decay modes. The lifetime ratio of Ds to D0 is 1.145+-0.049.Comment: 5 pages, 2 figures submitted to Phys. Lett.

    Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV

    Full text link
    We report the results of a study of color coherence effects in ppbar collisions based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8 TeV. Initial-to-final state color interference effects are studied by examining particle distribution patterns in events with a W boson and at least one jet. The data are compared to Monte Carlo simulations with different color coherence implementations and to an analytic modified-leading-logarithm perturbative calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters
    • …
    corecore