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Abstract

Piezoelectrically generated surface and pseudosurface acoustic waves are simulated and analyzed in the mathematical framework

based on the integral representations and guided wave asymptotics. In addition to the abilities of the conventional modal analysis,

the integral equation approach explicitly provides the amplitudes of waves generated by a specified source, making it possible

to evaluate the wave energy transmitted from the source into the substrate and its distribution among the excited guided waves.

Diamond based microdevices and piezoelectric patch actuators are considered as examples.
c© 2015 The Authors. Published by Elsevier B.V.
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1. Introduction

The action of many microdevices is based on the guided acoustic wave generation and propagation in elastic

substrates. The guided wave (GW) characteristics required for the evaluation and optimization of their performance

are obtained on the basis of mathematical and computer modeling. A conventional tool of GW study is the modal

analysis technique yielding the wavenumber, velocity and spatial eigenform of every GW mode supported by the

waveguide structure considered. However, since every eigensolution is defined up to a constant factor, the modal

analysis cannot directly provide the amplitude and energy characteristics of the GWs generated by a specified source.

Hence, it is not possible to evaluate such important characteristics for the device design as the total amount of wave

energy supplied by a driving electric signal at a certain central frequency and its distribution among the excited GWs.

Such a study assumes the use of coupled source-structure solutions of non-homogeneous boundary value problems

(BVP), in which the source action is accounted for via non-zero boundary conditions. At present, this kind of work

is mostly executed using commercial FEM packages that can provide quantitative data with practically arbitrary

geometry and material properties of simulated objects. However, their use is often computationally expensive, not

giving direct information on the GW characteristics.

∗ Corresponding author

E-mail address: evg@math.kubsu.ru

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Scientific Committee of ICU 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81156764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.phpro.2015.08.196&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.phpro.2015.08.196&domain=pdf


946   E.V. Glushkov et al.  /  Physics Procedia   70  ( 2015 )  945 – 948 

Fig. 1. Geometry of the problems: (a) diamond-based device; (b) PWAS.

At the same time, there exists a way to obtain the same physically evident and low-cost GW representations as

the modal analysis provides but, in addition, uniquely fixing the amplitude (and so the energy) of every excited wave

depending on the source and structural parameters. This approach is based on the integral transform application

to BVPs simulating waveguide structures with plane-parallel boundaries. It allows one to derive an explicit BVP

solution in the form of inverse Fourier-transform path integrals. The residual technique reduces it then to the form of

GW expansion, e.g., in the 2D case:

v(x, z)e−iωt =
1

2π

∫

Γ

V(α, z)e−i(αx+ωt)dα ∼
∑

n

an(z)ei(ζn x−ωt), x > a. (1)

Here v = (u, ϕ) is the complex amplitude of a coupled elastoelectric time-harmonic field, V = Fx[v] is its Fourier-

transform symbol with respect to the horizontal variable x, and an = −i res V|α=−ζn , where ζn are all real poles of the

integrand V plus a finite number of the nearest complex ones to the real axis; ω = 2π f is angular frequency. The poles

enter in the expansion as wavenumbers, yielding constant traveling waves with real ζn (surface acoustic waves – SAW)

and decaying ones with complex ζn (pseudosurface acoustic waves - PSAW). The phase velocity cn, wavelength λn,

and logarithmic decrement δn of every GW specified by the summands in Eq. (1) are cn = ω/Re ζn, λn = 2π/Re ζn,

and δn = 2π Im ζn/Re ζn.

The solution in the Fourier transform domain can be derived in terms of the Fourier symbols of the Green’s matrix

of the structure k(x) and the source vector q(x):

V(α, z) = K(α, z)Q(α), K = Fx[k] and Q = Fx[q]. (2)

Thus, the amplitude vectors an defined by the residues uniquely account for the spatial GW eigenforms (z-dependencies)

via Green’s matrix and for the source characteristics via Q(ζn).

The abilities of the integral equation approach are demonstrated with two examples of its implementation: 1) for

SAW microdevices fabricated from polycrystalline diamond layers covered by piezoelectric films (Fig. 1a) and 2) for

piezoelectric wafer active sensors (PWAS) used for guided wave generation and registration in structural health mon-

itoring (SHM) systems (Fig. 1b).

2. Diamond based SAW devices

Polycrystalline diamond layers are attractive substrates for SAW devices because the diamond provides the highest

wave velocity among all other materials; Nakahata et al. (1995); Benetti et al. (2005). To enable piezoelectric SAW

excitation, a non-piezoelectric diamond layer is covered with a thin piezoelectric coating (Fig. 1a). Among those,

ZnO and AlN also provide high acoustic wave velocity; Benetti et al. (2005); Wu et al. (2008). The mathematical

framework and detailed description of the integral equation based models developed for such structures can be found

in Glushkov et al. (2012). That work was focused on the effect of PSAW-to-SAW degeneration at certain discrete

values h/λ (h is the thickness of the piezoelectric film and λ is the GW wavelength). The use of such degenerating

PSAWs with low leakage losses looks advantageous because they possess higher phase velocities than SAWs. Earlier,

the optimal ratios h/λ were discovered and experimentally verified for the first pseudo-surface (Sezawa) mode in the

two-layer AlN/Diamond structure (N = 2, H = ∞); Benetti et al. (2005). The research of Glushkov et al. (2012)

has revealed this effect for higher modes as well as examined its manifestation in three-layer structures with different

diamond-to-AlN thickness ratio H/h. A finite thickness of the diamond layer (N = 3, H < ∞) results in more

complicated dispersion curve patterns than in the two-layer case (Fig. 2).
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Fig. 2. SAW-PSAW phase velocities in (a) two- and (b) three-layer structures.

Fig. 3. (a) Coupling coefficients, (b) GW amplitudes.

The ranges of SAW and PSAW in Fig. 2 are differentiated by the velocity cs of the bulk S -waves in the underlying

elastic half-space. In the two-layer structure, the threshold is determined by a rather high S -wave velocity in the

diamond: cs = cs,2 = 12.32 km/s. The phase velocity curves beneath this level (cn < cs) are for the undamped

SAWs while those above this boundary (cn > cs) are real parts of the complex PSAWs’ phase velocities ω/ζn. The

wavenumber κs = ω/cs is a branch point of the Fourier domain solution V(α, z), and the SAW real poles ζn come out

from the real axis into the complex α-plane when pass through α = κs if tracing them from right to left. The even ones

get on the physical Riemann surface sheet while the odd ones go off onto the unphysical sheet ceasing contribution

into the GW expansion in Eq. (1). Consequently, they are not drawn above cs in Fig. 2a.

In the N = 3 case, the threshold velocity cs in the lower metallic γ-TiAl half-space is considerably less than that in

the diamond: cs = cs,3 = 4.04 km/s. It implies that all former real (SAW) branches shown in Fig. 2a become formally

complex in the three-layer model (Fig. 2b). Nevertheless, with a sufficiently large ratio H/h, the pattern of former

real dispersion curves changes insignificantly and their losses δn are also negligible. Above the former threshold cs,2,

the loss decrements δn increase. However, the effect of PSAW-to-SAW degeneration still remains, manifesting itself

in sharp δn decreases at certain h/λ. Since cs,2 is no longer a branch point, all the curves passing this level remain in

the physical sheet. The curves above cs,2 are sharply shifted to the left that makes their presence in this range much

denser compared to Fig. 2a.

Conventionally, the structure’s ability to produce various GWs in response to an applied voltage is estimated via the

coupling coefficients K2
n = 2(co

n − cs
n)/co

n, where co
n and cs

n are phase velocities of the nth GW mode propagating over

open-circuited and short-circuited surfaces, respectively. Figure 3a depicts K2 versus h/λ for the first five SAW modes

shown in Fig. 2a. Their pattern coincides with that presented in Wu et al. (2008). It is interesting to compare the K2

dependences with the relative amplitude factors An = |an(0)/d| shown in Fig. 3b. Here an are the displacement vector-

coefficients in GW expansion (1) obtained for the point electric source D3 = dδ(x) C/m; δ(x) is Dirac delta-function.

Both these characteristics give similar information about the ranges of individual mode domination or attenuation.

And the use of Eq. (1) for the GW power estimation seems to be more advantageous as it directly yields the GW

amplitudes accounting for the source parameters.
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Fig. 4. Simulated within coupled (top) and uncoupled (bottom-left) models source energy E0 and the part of A0 energy EA/E0 as functions of ω
and a; substracture’s dispersion properties (bottom-right).

3. PWAS power distribution among the excited GWs

The active elements of SHM systems are often made of flexible piezoelectric patches that are bonded to the in-

spected structure (Fig. 1b). The longitudinal patch deformation caused by a driving electric field Ez due to piezoelec-

tric effect results in a shear contact traction τxz = q(x) at the patch-structure interface. The traction q applied to the

substructure generates traveling elastic waves described by the GW expansion in Eq. (1). The source (PWAS) controls

the GW amplitudes via the traction’s Fourier symbol Q(α) = Fx[q] in Eq. (2). In general, q(x) is unknown and has

to be obtained from a coupled contact problem accounting for both patch and plate deformation under the bonding

condition in the contact area |x| ≤ a.

In widely used simplified uncoupled models the PWAS action is approximated by two oppositely directed tangen-

tial point forces applied at the patch edges: q(x) = q0[δ(x−a)−δ(x+a)]; Giurgiutiu (2000). It yields reasonably good

results at low frequencies. However, they become worse with increasing frequency, especially when higher Lamb

modes appear in addition to the fundamental symmetric and antisymmetric modes S 0 and A0. To improve the results,

the contact problem arising in the coupled model has been brought to the Wiener-Hopf type integral equation and

solved via reducing it to a stably truncated infinite algebraic system; Glushkov et al. (2007). As an example, Fig. 4

depicts the time-averaged energy E0 supplied by PWAS and the part of the A0 mode energy EA in the total source

power E0 obtained as functions of frequency ω and patch semi-width a within the coupled and uncoupled models.
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