Crucial words for abelian powers*

Amy Glen

Postdoctoral Researcher

The Mathematics Institute @ Reykjavík University

amy.glen@gmail.com
http://www.ru.is/kennarar/amy

Mathematics Colloquium @ University of Iceland

$$
\text { January 12, } 2009
$$

* Joint work with Bjarni V. Halldórsson \& Sergey Kitaev.

Outline

(1) Background

- Repetitions \& patterns in words
- Crucial words \& abelian powers
(2) Minimal crucial words avoiding abelian cubes
- Upper bound for length
- Lower bound for length
(3) Minimal crucial words avoiding abelian k-th powers
- Upper bound for length
- Lower bound for length
(4) Further research

Outline

(1) Background

- Repetitions \& patterns in words
- Crucial words \& abelian powers
(2) Minimal crucial words avoiding abelian cubes
- Upper bound for length
- Lower bound for length
(3) Minimal crucial words avoiding abelian k-th powers
- Upper bound for length
- Lower bound for length

4. Further research

Repetitions in words

- A word w is a finite or infinite sequence of symbols (letters) taken from a non-empty finite set \mathcal{A} (alphabet).
Example with $\mathcal{A}=\{a, b, c\}$:

$$
w=a b c a, \quad w^{\infty}=(a b c a)^{\infty}=a b c a a b c a a b c a a b c a \cdots .
$$

Repetitions in words

- A word w is a finite or infinite sequence of symbols (letters) taken from a non-empty finite set \mathcal{A} (alphabet).
Example with $\mathcal{A}=\{a, b, c\}$:

$$
w=a b c a, \quad w^{\infty}=(a b c a)^{\infty}=a b c a a b c a a b c a a b c a \cdots .
$$

- A factor of a word w is a block of consecutive letters in w.

Example: $w=a b c a$ has 9 distinct factors

$$
\{a, b, c, a b, b c, c a, a b c, b c a, a b c a\} .
$$

Repetitions in words

- A word w is a finite or infinite sequence of symbols (letters) taken from a non-empty finite set \mathcal{A} (alphabet).
Example with $\mathcal{A}=\{a, b, c\}$:

$$
w=a b c a, \quad w^{\infty}=(a b c a)^{\infty}=a b c a a b c a a b c a a b c a \cdots .
$$

- A factor of a word w is a block of consecutive letters in w.

Example: $w=a b c a$ has 9 distinct factors

$$
\{a, b, c, a b, b c, c a, a b c, b c a, a b c a\} .
$$

- The length of a word w is the number of letters it contains. Example: $|a b c a|=4$.

Repetitions in words

- A word w is a finite or infinite sequence of symbols (letters) taken from a non-empty finite set \mathcal{A} (alphabet).
Example with $\mathcal{A}=\{a, b, c\}$:

$$
w=a b c a, \quad w^{\infty}=(a b c a)^{\infty}=a b c a a b c a a b c a a b c a \cdots .
$$

- A factor of a word w is a block of consecutive letters in w. Example: $w=a b c a$ has 9 distinct factors

$$
\{a, b, c, a b, b c, c a, a b c, b c a, a b c a\} .
$$

- The length of a word w is the number of letters it contains. Example: $|a b c a|=4$.
- Fact: Over a 2-letter alphabet $\{a, b\}$, any word w with $|w|>3$ must have a factor of the form $X X=X^{2}$, called a square.

Repetitions in words

- A word w is a finite or infinite sequence of symbols (letters) taken from a non-empty finite set \mathcal{A} (alphabet).
Example with $\mathcal{A}=\{a, b, c\}$:

$$
w=a b c a, \quad w^{\infty}=(a b c a)^{\infty}=a b c a a b c a a b c a a b c a \cdots .
$$

- A factor of a word w is a block of consecutive letters in w. Example: $w=a b c a$ has 9 distinct factors

$$
\{a, b, c, a b, b c, c a, a b c, b c a, a b c a\} .
$$

- The length of a word w is the number of letters it contains. Example: $|a b c a|=4$.
- Fact: Over a 2-letter alphabet $\{a, b\}$, any word w with $|w|>3$ must have a factor of the form $X X=X^{2}$, called a square.

Check: a

Repetitions in words

- A word w is a finite or infinite sequence of symbols (letters) taken from a non-empty finite set \mathcal{A} (alphabet).

Example with $\mathcal{A}=\{a, b, c\}$:

$$
w=a b c a, \quad w^{\infty}=(a b c a)^{\infty}=a b c a a b c a a b c a a b c a \cdots .
$$

- A factor of a word w is a block of consecutive letters in w. Example: $w=a b c a$ has 9 distinct factors

$$
\{a, b, c, a b, b c, c a, a b c, b c a, a b c a\} .
$$

- The length of a word w is the number of letters it contains. Example: $|a b c a|=4$.
- Fact: Over a 2-letter alphabet $\{a, b\}$, any word w with $|w|>3$ must have a factor of the form $X X=X^{2}$, called a square.
Check: $a \rightarrow a b$

Repetitions in words

- A word w is a finite or infinite sequence of symbols (letters) taken from a non-empty finite set \mathcal{A} (alphabet).

Example with $\mathcal{A}=\{a, b, c\}$:

$$
w=a b c a, \quad w^{\infty}=(a b c a)^{\infty}=a b c a a b c a a b c a a b c a \cdots .
$$

- A factor of a word w is a block of consecutive letters in w. Example: $w=a b c a$ has 9 distinct factors

$$
\{a, b, c, a b, b c, c a, a b c, b c a, a b c a\} .
$$

- The length of a word w is the number of letters it contains. Example: $|a b c a|=4$.
- Fact: Over a 2-letter alphabet $\{a, b\}$, any word w with $|w|>3$ must have a factor of the form $X X=X^{2}$, called a square.
Check: $a \rightarrow a b \rightarrow a b a$

Repetitions in words

- A word w is a finite or infinite sequence of symbols (letters) taken from a non-empty finite set \mathcal{A} (alphabet).

Example with $\mathcal{A}=\{a, b, c\}$:

$$
w=a b c a, \quad w^{\infty}=(a b c a)^{\infty}=a b c a a b c a a b c a a b c a \cdots .
$$

- A factor of a word w is a block of consecutive letters in w. Example: $w=a b c a$ has 9 distinct factors

$$
\{a, b, c, a b, b c, c a, a b c, b c a, a b c a\} .
$$

- The length of a word w is the number of letters it contains. Example: $|a b c a|=4$.
- Fact: Over a 2-letter alphabet $\{a, b\}$, any word w with $|w|>3$ must have a factor of the form $X X=X^{2}$, called a square.
Check: $a \rightarrow a b \rightarrow a b a \rightarrow a b$.

Repetitions in words

- Axel Thue (1863-1922): First to construct an infinite word over a 3-letter alphabet $\{a, b, c\}$ containing no repetitions, i.e., avoiding the pattern $X X$.

Repetitions in words

- Axel Thue (1863-1922): First to construct an infinite word over a 3-letter alphabet $\{a, b, c\}$ containing no repetitions, i.e., avoiding the pattern $X X$.
- Obtained by iterating the following substitution rule (or morphism) on the letter a :

$$
a \mapsto b, b \mapsto c a, c \mapsto c b a .
$$

Repetitions in words

- Axel Thue (1863-1922): First to construct an infinite word over a 3-letter alphabet $\{a, b, c\}$ containing no repetitions, i.e., avoiding the pattern $X X$.
- Obtained by iterating the following substitution rule (or morphism) on the letter a :

$$
a \mapsto b, b \mapsto c a, c \mapsto c b a .
$$

- That is:

$$
a \rightarrow b
$$

Repetitions in words

- Axel Thue (1863-1922): First to construct an infinite word over a 3-letter alphabet $\{a, b, c\}$ containing no repetitions, i.e., avoiding the pattern $X X$.
- Obtained by iterating the following substitution rule (or morphism) on the letter a :

$$
a \mapsto b, b \mapsto c a, c \mapsto c b a .
$$

- That is:

$$
a \rightarrow b \rightarrow c a
$$

Repetitions in words

- Axel Thue (1863-1922): First to construct an infinite word over a 3-letter alphabet $\{a, b, c\}$ containing no repetitions, i.e., avoiding the pattern $X X$.
- Obtained by iterating the following substitution rule (or morphism) on the letter a :

$$
a \mapsto b, b \mapsto c a, c \mapsto c b a .
$$

- That is:

$$
a \rightarrow b \rightarrow c a \rightarrow c b a b
$$

Repetitions in words

- Axel Thue (1863-1922): First to construct an infinite word over a 3-letter alphabet $\{a, b, c\}$ containing no repetitions, i.e., avoiding the pattern $X X$.
- Obtained by iterating the following substitution rule (or morphism) on the letter a :

$$
a \mapsto b, b \mapsto c a, c \mapsto c b a .
$$

- That is:

$$
a \rightarrow b \rightarrow c a \rightarrow c b a b \rightarrow c b a c a b c a
$$

Repetitions in words

- Axel Thue (1863-1922): First to construct an infinite word over a 3-letter alphabet $\{a, b, c\}$ containing no repetitions, i.e., avoiding the pattern $X X$.
- Obtained by iterating the following substitution rule (or morphism) on the letter a :

$$
a \mapsto b, b \mapsto c a, c \mapsto c b a .
$$

- That is:

$$
a \rightarrow b \rightarrow c a \rightarrow c b a b \rightarrow c b a c a b c a \rightarrow c b a c a b c b a b c a c b a b \rightarrow \ldots
$$

Repetitions in words

- Axel Thue (1863-1922): First to construct an infinite word over a 3-letter alphabet $\{a, b, c\}$ containing no repetitions, i.e., avoiding the pattern $X X$.
- Obtained by iterating the following substitution rule (or morphism) on the letter a :

$$
a \mapsto b, b \mapsto c a, c \mapsto c b a .
$$

- That is:

$$
a \rightarrow b \rightarrow c a \rightarrow c b a b \rightarrow c b a c a b c a \rightarrow c b a c a b c b a b c a c b a b \rightarrow \ldots
$$

gives (in the limit) the infinite word
cbacabcbabcacbacabcacbabcbacabca...

Repetitions in words

- Thue (1912): also constructed an infinite word over $\{a, b\}$ avoiding factors of the form

$$
X X X=X^{3} \text { (called cubes) and } \quad X Y X Y X \text { (called overlaps). }
$$

Repetitions in words

- Thue (1912): also constructed an infinite word over $\{a, b\}$ avoiding factors of the form

$$
X X X=X^{3} \text { (called cubes) and } \quad X Y X Y X \text { (called overlaps). }
$$

- Obtained by iterating the following substitution μ on the letter a :

$$
\mu: a \mapsto a b, b \mapsto b a .
$$

Repetitions in words

- Thue (1912): also constructed an infinite word over $\{a, b\}$ avoiding factors of the form

$$
X X X=X^{3} \text { (called cubes) } \quad \text { and } \quad X Y X Y X \text { (called overlaps). }
$$

- Obtained by iterating the following substitution μ on the letter a :

$$
\mu: a \mapsto a b, b \mapsto b a .
$$

- That is:

$$
\lim _{n \rightarrow \infty} \mu^{n}(a)=\text { abbabaabbaababbabaababbaabbabaab } \ldots
$$

Repetitions in words

- Thue (1912): also constructed an infinite word over $\{a, b\}$ avoiding factors of the form

$$
X X X=X^{3} \text { (called cubes) and } \quad X Y X Y X \text { (called overlaps). }
$$

- Obtained by iterating the following substitution μ on the letter a :

$$
\mu: a \mapsto a b, b \mapsto b a .
$$

- That is:

$$
\lim _{n \rightarrow \infty} \mu^{n}(a)=\text { abbabaabbaababbabaababbaabbabaab } \cdots
$$

- Now called the Thue-Morse word as it was rediscovered by Morse in 1921 (in the context of symbolic dynamics).

Pattern avoidance

- Patterns such as $X, X Y X, X Y X Z X Y X$ (called sesquipowers) cannot be avoided by infinite words (i.e., they are unavoidable).

Pattern avoidance

- Patterns such as $X, X Y X, X Y X Z X Y X$ (called sesquipowers) cannot be avoided by infinite words (i.e., they are unavoidable).
- Avoidable and unavoidable regularities are topics of great interest. Connections to semigroup theory, universal algebra, formal language theory, symbolic dynamics, ...

Pattern avoidance

- Patterns such as $X, X Y X, X Y X Z X Y X$ (called sesquipowers) cannot be avoided by infinite words (i.e., they are unavoidable).
- Avoidable and unavoidable regularities are topics of great interest. Connections to semigroup theory, universal algebra, formal language theory, symbolic dynamics, ...
- Erdős (1961): introduced a commutative version of Thue's problem.

Does there exist an infinite word over a fixed finite alphabet containing no abelian squares, i.e., avoiding factors of the form $X X^{\prime}$ where X^{\prime} is a permutation of X ?

Pattern avoidance

- Patterns such as $X, X Y X, X Y X Z X Y X$ (called sesquipowers) cannot be avoided by infinite words (i.e., they are unavoidable).
- Avoidable and unavoidable regularities are topics of great interest. Connections to semigroup theory, universal algebra, formal language theory, symbolic dynamics, ...
- Erdős (1961): introduced a commutative version of Thue's problem.

Does there exist an infinite word over a fixed finite alphabet containing no abelian squares, i.e., avoiding factors of the form $X X^{\prime}$ where X^{\prime} is a permutation of X ?

- Answer: YES.

Pattern avoidance

- Patterns such as $X, X Y X, X Y X Z X Y X$ (called sesquipowers) cannot be avoided by infinite words (i.e., they are unavoidable).
- Avoidable and unavoidable regularities are topics of great interest. Connections to semigroup theory, universal algebra, formal language theory, symbolic dynamics, ...
- Erdős (1961): introduced a commutative version of Thue's problem.

Does there exist an infinite word over a fixed finite alphabet containing no abelian squares, i.e., avoiding factors of the form $X X^{\prime}$ where X^{\prime} is a permutation of X ?

- Answer: YES. Existence was established for alphabets of size:
- 25 and improved to 7 (A. Evdokimov, 1968 \& 1971);
- 5 (P.A.B. Pleasants, 1970);
- 4 (Keränen, 1992), the optimal result (such a word does not exist over a 3-letter alphabet).

Pattern avoidance . . .

- Carpi (1998): On a 4-letter alphabet:
- the number of words avoiding abelian squares grows exponentially with respect to the length of the word;

Pattern avoidance . . .

- Carpi (1998): On a 4-letter alphabet:
- the number of words avoiding abelian squares grows exponentially with respect to the length of the word;
- the set of infinite words avoiding abelian squares is uncountable;

Pattern avoidance . . .

- Carpi (1998): On a 4-letter alphabet:
- the number of words avoiding abelian squares grows exponentially with respect to the length of the word;
- the set of infinite words avoiding abelian squares is uncountable;
- the monoid of abelian square-free endomorphisms (i.e., morphisms that map any abelian square-free word onto an abelian square-free word) is not finitely generated.

Pattern avoidance . . .

- Carpi (1998): On a 4-letter alphabet:
- the number of words avoiding abelian squares grows exponentially with respect to the length of the word;
- the set of infinite words avoiding abelian squares is uncountable;
- the monoid of abelian square-free endomorphisms (i.e., morphisms that map any abelian square-free word onto an abelian square-free word) is not finitely generated.
- Thue's problem of avoiding squares naturally generalises to avoiding more complicated patterns too.

Problems of this type arose as questions in algebra:
Bean et al. (1979); Zimin (1984).
A natural abelian version of pattern avoidability was first given by Currie and Linek (2001).

Pattern avoidance . . .

- Carpi (1998): On a 4-letter alphabet:
- the number of words avoiding abelian squares grows exponentially with respect to the length of the word;
- the set of infinite words avoiding abelian squares is uncountable;
- the monoid of abelian square-free endomorphisms (i.e., morphisms that map any abelian square-free word onto an abelian square-free word) is not finitely generated.
- Thue's problem of avoiding squares naturally generalises to avoiding more complicated patterns too.

Problems of this type arose as questions in algebra:
Bean et al. (1979); Zimin (1984).
A natural abelian version of pattern avoidability was first given by Currie and Linek (2001).

- We are interested in a particular problem in relation to words avoiding abelian powers.

Abelian powers

Let $\mathcal{A}_{n}=\{1,2, \ldots, n\}$ and let $k \geq 2$ be an integer.

Abelian powers

Let $\mathcal{A}_{n}=\{1,2, \ldots, n\}$ and let $k \geq 2$ be an integer.

- A word W over \mathcal{A}_{n} contains a k-th power if W has a factor of the form

$$
X^{k}=X X \ldots X(k \text { times }) \text { for some non-empty word } X
$$

Abelian powers

Let $\mathcal{A}_{n}=\{1,2, \ldots, n\}$ and let $k \geq 2$ be an integer.

- A word W over \mathcal{A}_{n} contains a k-th power if W has a factor of the form

$$
X^{k}=X X \ldots X(k \text { times }) \text { for some non-empty word } X
$$

- Example:
$V=13243232323243$ contains the 4-th power $(32)^{4}=32323232$.

Abelian powers

Let $\mathcal{A}_{n}=\{1,2, \ldots, n\}$ and let $k \geq 2$ be an integer.

- A word W over \mathcal{A}_{n} contains a k-th power if W has a factor of the form

$$
X^{k}=X X \ldots X(k \text { times }) \text { for some non-empty word } X
$$

- Example:
$V=13243232323243$ contains the 4-th power $(32)^{4}=32323232$.
- A word W contains an abelian k-th power if W has a factor of the form $X_{1} X_{2} \ldots X_{k}$ where X_{i} is a permutation of X_{1} for $2 \leq i \leq k$.

Abelian powers

Let $\mathcal{A}_{n}=\{1,2, \ldots, n\}$ and let $k \geq 2$ be an integer.

- A word W over \mathcal{A}_{n} contains a k-th power if W has a factor of the form

$$
X^{k}=X X \ldots X(k \text { times }) \text { for some non-empty word } X
$$

- Example:

$$
V=13243232323243 \text { contains the 4-th power }(32)^{4}=32323232 .
$$

- A word W contains an abelian k-th power if W has a factor of the form $X_{1} X_{2} \ldots X_{k}$ where X_{i} is a permutation of X_{1} for $2 \leq i \leq k$.

The cases $k=2$ and $k=3$ give us (abelian) squares and cubes.

Abelian powers

Let $\mathcal{A}_{n}=\{1,2, \ldots, n\}$ and let $k \geq 2$ be an integer.

- A word W over \mathcal{A}_{n} contains a k-th power if W has a factor of the form

$$
X^{k}=X X \ldots X(k \text { times }) \text { for some non-empty word } X
$$

- Example:

$$
V=13243232323243 \text { contains the 4-th power }(32)^{4}=32323232
$$

- A word W contains an abelian k-th power if W has a factor of the form $X_{1} X_{2} \ldots X_{k}$ where X_{i} is a permutation of X_{1} for $2 \leq i \leq k$.

The cases $k=2$ and $k=3$ give us (abelian) squares and cubes.

- Examples:
- V contains the abelian square 4323232324 .
- 123312213 is an abelian cube.

Crucial words with respect to abelian powers

- A word is (abelian) k-power-free if it avoids (abelian) k-th powers. Example: 1234324 is abelian cube-free, but not abelian square-free since it contains the abelian square 234324.

Crucial words with respect to abelian powers

- A word is (abelian) k-power-free if it avoids (abelian) k-th powers. Example: 1234324 is abelian cube-free, but not abelian square-free since it contains the abelian square 234324.
- Dekking (1979): abelian cubes and abelian fourth powers can be avoided by infinite words on three and two letters, respectively.

Crucial words with respect to abelian powers

- A word is (abelian) k-power-free if it avoids (abelian) k-th powers. Example: 1234324 is abelian cube-free, but not abelian square-free since it contains the abelian square 234324.
- Dekking (1979): abelian cubes and abelian fourth powers can be avoided by infinite words on three and two letters, respectively.
- A word W over \mathcal{A}_{n} is crucial with respect to a given set of prohibited words (or simply prohibitions) if W avoids the prohibitions, but $W x$ does not avoid the prohibitions for any $x \in \mathcal{A}_{n}$.

Crucial words with respect to abelian powers

- A word is (abelian) k-power-free if it avoids (abelian) k-th powers. Example: 1234324 is abelian cube-free, but not abelian square-free since it contains the abelian square 234324.
- Dekking (1979): abelian cubes and abelian fourth powers can be avoided by infinite words on three and two letters, respectively.
- A word W over \mathcal{A}_{n} is crucial with respect to a given set of prohibited words (or simply prohibitions) if W avoids the prohibitions, but $W x$ does not avoid the prohibitions for any $x \in \mathcal{A}_{n}$.

A minimal crucial word is a crucial word of the shortest length.

Crucial words with respect to abelian powers

- A word is (abelian) k-power-free if it avoids (abelian) k-th powers. Example: 1234324 is abelian cube-free, but not abelian square-free since it contains the abelian square 234324.
- Dekking (1979): abelian cubes and abelian fourth powers can be avoided by infinite words on three and two letters, respectively.
- A word W over \mathcal{A}_{n} is crucial with respect to a given set of prohibited words (or simply prohibitions) if W avoids the prohibitions, but $W x$ does not avoid the prohibitions for any $x \in \mathcal{A}_{n}$.

A minimal crucial word is a crucial word of the shortest length.

- Example: $W=21211$ is crucial with respect to abelian cubes since:
- W is abelian cube-free;

Crucial words with respect to abelian powers

- A word is (abelian) k-power-free if it avoids (abelian) k-th powers. Example: 1234324 is abelian cube-free, but not abelian square-free since it contains the abelian square 234324.
- Dekking (1979): abelian cubes and abelian fourth powers can be avoided by infinite words on three and two letters, respectively.
- A word W over \mathcal{A}_{n} is crucial with respect to a given set of prohibited words (or simply prohibitions) if W avoids the prohibitions, but $W x$ does not avoid the prohibitions for any $x \in \mathcal{A}_{n}$.

A minimal crucial word is a crucial word of the shortest length.

- Example: $W=21211$ is crucial with respect to abelian cubes since:
- W is abelian cube-free;
- W1 and $W 2$ end with the abelian cubes 111 and 2121 12, respectively.

Crucial words with respect to abelian powers

- A word is (abelian) k-power-free if it avoids (abelian) k-th powers. Example: 1234324 is abelian cube-free, but not abelian square-free since it contains the abelian square 234324.
- Dekking (1979): abelian cubes and abelian fourth powers can be avoided by infinite words on three and two letters, respectively.
- A word W over \mathcal{A}_{n} is crucial with respect to a given set of prohibited words (or simply prohibitions) if W avoids the prohibitions, but $W x$ does not avoid the prohibitions for any $x \in \mathcal{A}_{n}$.

A minimal crucial word is a crucial word of the shortest length.

- Example: $W=21211$ is crucial with respect to abelian cubes since:
- W is abelian cube-free;
- W1 and $W 2$ end with the abelian cubes 111 and 212112 , respectively. In fact: W is a minimal crucial word over $\{1,2\}$ with respect to abelian cubes.

Zimin words

- Problems of the type proposed by Erdős in 1961 were also considered by Zimin (1984) in the non-abelian sense.

Zimin words

- Problems of the type proposed by Erdős in 1961 were also considered by Zimin (1984) in the non-abelian sense.
- The Zimin word Z_{n} over \mathcal{A}_{n} is defined recursively as follows:

$$
Z_{1}=1 \quad \text { and } \quad Z_{n}=Z_{n-1} n Z_{n-1} \quad \text { for } n \geq 2
$$

The first four Zimin words are:

Zimin words

- Problems of the type proposed by Erdős in 1961 were also considered by Zimin (1984) in the non-abelian sense.
- The Zimin word Z_{n} over \mathcal{A}_{n} is defined recursively as follows:

$$
Z_{1}=1 \quad \text { and } \quad Z_{n}=Z_{n-1} n Z_{n-1} \quad \text { for } n \geq 2
$$

The first four Zimin words are:
$Z_{1}=1$,

Zimin words

- Problems of the type proposed by Erdős in 1961 were also considered by Zimin (1984) in the non-abelian sense.
- The Zimin word Z_{n} over \mathcal{A}_{n} is defined recursively as follows:

$$
Z_{1}=1 \quad \text { and } \quad Z_{n}=Z_{n-1} n Z_{n-1} \quad \text { for } n \geq 2
$$

The first four Zimin words are:
$Z_{1}=1$,
$Z_{2}=121$,

Zimin words

- Problems of the type proposed by Erdős in 1961 were also considered by Zimin (1984) in the non-abelian sense.
- The Zimin word Z_{n} over \mathcal{A}_{n} is defined recursively as follows:

$$
Z_{1}=1 \quad \text { and } \quad Z_{n}=Z_{n-1} n Z_{n-1} \quad \text { for } n \geq 2
$$

The first four Zimin words are:
$Z_{1}=1$,
$Z_{2}=121$,
$Z_{3}=1213121$,

Zimin words

- Problems of the type proposed by Erdős in 1961 were also considered by Zimin (1984) in the non-abelian sense.
- The Zimin word Z_{n} over \mathcal{A}_{n} is defined recursively as follows:

$$
Z_{1}=1 \quad \text { and } \quad Z_{n}=Z_{n-1} n Z_{n-1} \quad \text { for } n \geq 2
$$

The first four Zimin words are:
$Z_{1}=1$,
$Z_{2}=121$,
$Z_{3}=1213121$,
$Z_{4}=121312141213121$.

Zimin words

- Problems of the type proposed by Erdős in 1961 were also considered by Zimin (1984) in the non-abelian sense.
- The Zimin word Z_{n} over \mathcal{A}_{n} is defined recursively as follows:

$$
Z_{1}=1 \quad \text { and } \quad Z_{n}=Z_{n-1} n Z_{n-1} \quad \text { for } n \geq 2
$$

The first four Zimin words are:
$Z_{1}=1$,
$Z_{2}=121$,
$Z_{3}=1213121$, $Z_{4}=121312141213121$.

- The k-generalised Zimin word $Z_{n}^{k}=X_{n}$ is defined as

$$
X_{1}=1^{k-1}=11 \ldots 1, X_{n}=\left(X_{n-1} n\right)^{k-1} X_{n-1}=X_{n-1} n X_{n-1} n \ldots n X_{n-1}
$$

where the number of 1 's, as well as the number of n 's, is $k-1$.

Zimin words . . .

- The first three 3-generalised Zimin words are:

Zimin words . . .

- The first three 3-generalised Zimin words are: $Z_{1}^{3}=11$,

Zimin words . . .

- The first three 3-generalised Zimin words are:

$$
\begin{aligned}
& Z_{1}^{3}=11 \\
& Z_{2}^{3}=11 \underline{2} 11 \underline{2} 11
\end{aligned}
$$

Zimin words . . .

- The first three 3-generalised Zimin words are:

$$
\begin{aligned}
& Z_{1}^{3}=11 \\
& Z_{2}^{3}=11 \underline{2} 11 \underline{2} 11 \\
& Z_{3}^{3}=11211211 \underline{3} 11211211 \underline{3} 11211211 .
\end{aligned}
$$

Zimin words . . .

- The first three 3-generalised Zimin words are:

$$
\begin{aligned}
& Z_{1}^{3}=11 \\
& Z_{2}^{3}=11 \underline{2} 11 \underline{2} 11 \\
& Z_{3}^{3}=11211211 \underline{3} 11211211 \underline{3} 11211211 .
\end{aligned}
$$

Note:

- $Z_{n}=Z_{n}^{2}$.

Zimin words . . .

- The first three 3-generalised Zimin words are:

$$
\begin{aligned}
& Z_{1}^{3}=11 \\
& Z_{2}^{3}=11 \underline{2} 11 \underline{2} 11 \\
& Z_{3}^{3}=11211211 \underline{3} 11211211 \underline{3} 11211211 .
\end{aligned}
$$

Note:

- $Z_{n}=Z_{n}^{2}$.
- Z_{n}^{k} is crucial with respect to (abelian) k-th powers.

Zimin words . . .

- The first three 3-generalised Zimin words are:

$$
\begin{aligned}
& Z_{1}^{3}=11 \\
& Z_{2}^{3}=11 \underline{2} 11 \underline{2} 11 \\
& Z_{3}^{3}=11211211 \underline{3} 11211211 \underline{3} 11211211 .
\end{aligned}
$$

Note:

- $Z_{n}=Z_{n}^{2}$.
- Z_{n}^{k} is crucial with respect to (abelian) k-th powers.
- Z_{n}^{k} has length $k^{n}-1$.

Zimin words . . .

- The first three 3-generalised Zimin words are:

$$
\begin{aligned}
& Z_{1}^{3}=11 \\
& Z_{2}^{3}=11 \underline{2} 11 \underline{2} 11 \\
& Z_{3}^{3}=11211211 \underline{3} 11211211 \underline{3} 11211211 .
\end{aligned}
$$

Note:

- $Z_{n}=Z_{n}^{2}$.
- Z_{n}^{k} is crucial with respect to (abelian) k-th powers.
- Z_{n}^{k} has length $k^{n}-1$.
- Z_{n}^{k} gives the length of a minimal crucial word avoiding k-th powers.

Zimin words . . .

- The first three 3-generalised Zimin words are:

$$
\begin{aligned}
& Z_{1}^{3}=11 \\
& Z_{2}^{3}=11 \underline{2} 11 \underline{2} 11 \\
& Z_{3}^{3}=11211211 \underline{3} 11211211 \underline{3} 11211211 .
\end{aligned}
$$

Note:

- $Z_{n}=Z_{n}^{2}$.
- Z_{n}^{k} is crucial with respect to (abelian) k-th powers.
- Z_{n}^{k} has length $k^{n}-1$.
- Z_{n}^{k} gives the length of a minimal crucial word avoiding k-th powers.

Much less is known in the case of abelian k-th powers ...

Minimal crucial words avoiding abelian powers

- Cummings-May (2000) \& Evdokimov-Kitaev (2004): constructed crucial abelian square-free words of exponential length.

Minimal crucial words avoiding abelian powers

- Cummings-May (2000) \& Evdokimov-Kitaev (2004): constructed crucial abelian square-free words of exponential length.
- Evdokimov-Kitaev (2004): proved that a minimal crucial abelian square-free word over an n-letter alphabet has length $4 n-7$ for $n \geq 3$.

Minimal crucial words avoiding abelian powers

- Cummings-May (2000) \& Evdokimov-Kitaev (2004): constructed crucial abelian square-free words of exponential length.
- Evdokimov-Kitaev (2004): proved that a minimal crucial abelian square-free word over an n-letter alphabet has length $4 n-7$ for $n \geq 3$.
- Now we extend the study of crucial abelian k-power-free words to the case of $k>2$.
- We provide a complete solution to the problem of determining the length of a minimal crucial abelian cube-free word (the case $k=3$).
- And we conjecture a solution in the general case.

Minimal crucial words avoiding abelian powers

- Cummings-May (2000) \& Evdokimov-Kitaev (2004): constructed crucial abelian square-free words of exponential length.
- Evdokimov-Kitaev (2004): proved that a minimal crucial abelian square-free word over an n-letter alphabet has length $4 n-7$ for $n \geq 3$.
- Now we extend the study of crucial abelian k-power-free words to the case of $k>2$.
- We provide a complete solution to the problem of determining the length of a minimal crucial abelian cube-free word (the case $k=3$).
- And we conjecture a solution in the general case.
- Let $\ell_{k}(n)$ denote the length of a minimal crucial word over \mathcal{A}_{n} avoiding abelian k-th powers.

Outline

(1) Background

- Repetitions \& patterns in words
- Crucial words \& abelian powers
(2) Minimal crucial words avoiding abelian cubes
- Upper bound for length
- Lower bound for length
(3) Minimal crucial words avoiding abelian k-th powers
- Upper bound for length
- Lower bound for length
(4) Further research

Upper bound for $\ell_{3}(n)$

- Z_{n}^{3} crucial with respect to abelian cubes $\Longrightarrow \ell_{3}(n) \leq 3^{n}-1$.

Upper bound for $\ell_{3}(n)$

- Z_{n}^{3} crucial with respect to abelian cubes $\Longrightarrow \ell_{3}(n) \leq 3^{n}-1$. Improvement:

Theorem (G.-Halldórsson-Kitaev, 2008)

For $n \geq 1$, we have $\ell_{3}(n) \leq 3 \cdot 2^{n-1}-1$.

Upper bound for $\ell_{3}(n)$

- Z_{n}^{3} crucial with respect to abelian cubes $\Longrightarrow \ell_{3}(n) \leq 3^{n}-1$. Improvement:

Theorem (G.-Halldórsson-Kitaev, 2008)

For $n \geq 1$, we have $\ell_{3}(n) \leq 3 \cdot 2^{n-1}-1$.
Sketch Proof: "Greedy" construction of a crucial abelian cube-free word $X=X_{n}$ over \mathcal{A}_{n}, defined recursively as follows:

$$
X_{1}=11 \quad \text { and } \quad X_{n}=\phi_{1}\left(\sigma\left(X_{n-1}\right)\right) 1 \quad \text { for } n \geq 2
$$

where $\sigma: x \mapsto x+1$ and $\phi_{1}: x \mapsto x 1$ for all letters x.

Upper bound for $\ell_{3}(n)$

- Z_{n}^{3} crucial with respect to abelian cubes $\Longrightarrow \ell_{3}(n) \leq 3^{n}-1$. Improvement:

Theorem (G.-Halldórsson-Kitaev, 2008)

For $n \geq 1$, we have $\ell_{3}(n) \leq 3 \cdot 2^{n-1}-1$.
Sketch Proof: "Greedy" construction of a crucial abelian cube-free word $X=X_{n}$ over \mathcal{A}_{n}, defined recursively as follows:

$$
X_{1}=11 \quad \text { and } \quad X_{n}=\phi_{1}\left(\sigma\left(X_{n-1}\right)\right) 1 \quad \text { for } n \geq 2
$$

where $\sigma: x \mapsto x+1$ and $\phi_{1}: x \mapsto x 1$ for all letters x.
That is: Set $X_{1}=11$ and assume X_{n-1} has been constructed. Then:

Upper bound for $\ell_{3}(n)$

- Z_{n}^{3} crucial with respect to abelian cubes $\Longrightarrow \ell_{3}(n) \leq 3^{n}-1$. Improvement:

Theorem (G.-Halldórsson-Kitaev, 2008)

For $n \geq 1$, we have $\ell_{3}(n) \leq 3 \cdot 2^{n-1}-1$.
Sketch Proof: "Greedy" construction of a crucial abelian cube-free word $X=X_{n}$ over \mathcal{A}_{n}, defined recursively as follows:

$$
X_{1}=11 \quad \text { and } \quad X_{n}=\phi_{1}\left(\sigma\left(X_{n-1}\right)\right) 1 \quad \text { for } n \geq 2
$$

where $\sigma: x \mapsto x+1$ and $\phi_{1}: x \mapsto x 1$ for all letters x.
That is: Set $X_{1}=11$ and assume X_{n-1} has been constructed. Then:
(1) Increase all letters of X_{n-1} by 1 to obtain X_{n-1}^{\prime}.

Upper bound for $\ell_{3}(n)$

- Z_{n}^{3} crucial with respect to abelian cubes $\Longrightarrow \ell_{3}(n) \leq 3^{n}-1$. Improvement:

Theorem (G.-Halldórsson-Kitaev, 2008)

For $n \geq 1$, we have $\ell_{3}(n) \leq 3 \cdot 2^{n-1}-1$.
Sketch Proof: "Greedy" construction of a crucial abelian cube-free word $X=X_{n}$ over \mathcal{A}_{n}, defined recursively as follows:

$$
X_{1}=11 \quad \text { and } \quad X_{n}=\phi_{1}\left(\sigma\left(X_{n-1}\right)\right) 1 \quad \text { for } n \geq 2
$$

where $\sigma: x \mapsto x+1$ and $\phi_{1}: x \mapsto x 1$ for all letters x.
That is: Set $X_{1}=11$ and assume X_{n-1} has been constructed. Then:
(1) Increase all letters of X_{n-1} by 1 to obtain X_{n-1}^{\prime}.
(2) Insert the letter 1 to the right of each letter of X_{n-1}^{\prime} and adjoin one extra 1 to the right of the resulting word to obtain X_{n}.

Upper bound for $\ell_{3}(n) \ldots$

We have:
$X_{1}=11$

Upper bound for $\ell_{3}(n) \ldots$

We have:
$X_{1}=11$
$X_{2}=\phi_{1}(\sigma(11)) 1=$

Upper bound for $\ell_{3}(n) \ldots$

We have:
$X_{1}=11$
$X_{2}=\phi_{1}(\sigma(11)) 1=\phi_{1}(22) 1=$

Upper bound for $\ell_{3}(n) \ldots$

We have:
$X_{1}=11$
$X_{2}=\phi_{1}(\sigma(11)) 1=\phi_{1}(22) 1=21211$

Upper bound for $\ell_{3}(n) \ldots$

We have:
$X_{1}=11$
$X_{2}=\phi_{1}(\sigma(11)) 1=\phi_{1}(22) 1=21211$
$X_{3}=\phi_{1}(\sigma(21211)) 1=$

Upper bound for $\ell_{3}(n) \ldots$

We have:
$X_{1}=11$
$X_{2}=\phi_{1}(\sigma(11)) 1=\phi_{1}(22) 1=21211$
$X_{3}=\phi_{1}(\sigma(21211)) 1=\phi_{1}(32322) 1=$

Upper bound for $\ell_{3}(n) \ldots$

We have:

$$
\begin{aligned}
& X_{1}=11 \\
& X_{2}=\phi_{1}(\sigma(11)) 1=\phi_{1}(22) 1=21211 \\
& X_{3}=\phi_{1}(\sigma(21211)) 1=\phi_{1}(32322) 1=31213121211
\end{aligned}
$$

Upper bound for $\ell_{3}(n) \ldots$

We have:

$$
\begin{aligned}
& X_{1}=11 \\
& X_{2}=\phi_{1}(\sigma(11)) 1=\phi_{1}(22) 1=21211 \\
& X_{3}=\phi_{1}(\sigma(21211)) 1=\phi_{1}(32322) 1=31213121211 \\
& X_{4}=\phi_{1}\left(\sigma\left(X_{3}\right)\right) 1=
\end{aligned}
$$

Upper bound for $\ell_{3}(n) \ldots$

We have:

$$
\begin{aligned}
& X_{1}=11 \\
& X_{2}=\phi_{1}(\sigma(11)) 1=\phi_{1}(22) 1=21211 \\
& X_{3}=\phi_{1}(\sigma(21211)) 1=\phi_{1}(32322) 1=31213121211 \\
& X_{4}=\phi_{1}\left(\sigma\left(X_{3}\right)\right) 1=\phi_{1}(42324232322) 1=
\end{aligned}
$$

Upper bound for $\ell_{3}(n) \ldots$

We have:

$$
\begin{aligned}
& X_{1}=11 \\
& X_{2}=\phi_{1}(\sigma(11)) 1=\phi_{1}(22) 1=21211 \\
& X_{3}=\phi_{1}(\sigma(21211)) 1=\phi_{1}(32322) 1=31213121211 \\
& X_{4}=\phi_{1}\left(\sigma\left(X_{3}\right)\right) 1=\phi_{1}(42324232322) 1=41213121412131213121211
\end{aligned}
$$

Upper bound for $\ell_{3}(n) \ldots$

We have:

$$
\begin{aligned}
& X_{1}=11 \\
& X_{2}=\phi_{1}(\sigma(11)) 1=\phi_{1}(22) 1=21211 \\
& X_{3}=\phi_{1}(\sigma(21211)) 1=\phi_{1}(32322) 1=31213121211 \\
& X_{4}=\phi_{1}\left(\sigma\left(X_{3}\right)\right) 1=\phi_{1}(42324232322) 1=41213121412131213121211
\end{aligned}
$$

In general:

$$
\left|X_{n}\right|=3 \cdot 2^{n-1}-1
$$

Upper bound for $\ell_{3}(n) \ldots$

We have:

$$
\begin{aligned}
& X_{1}=11 \\
& X_{2}=\phi_{1}(\sigma(11)) 1=\phi_{1}(22) 1=21211 \\
& X_{3}=\phi_{1}(\sigma(21211)) 1=\phi_{1}(32322) 1=31213121211 \\
& X_{4}=\phi_{1}\left(\sigma\left(X_{3}\right)\right) 1=\phi_{1}(42324232322) 1=41213121412131213121211
\end{aligned}
$$

In general:

- $\left|X_{n}\right|=3 \cdot 2^{n-1}-1$.
- X_{n} is crucial with respect to abelian cubes: X_{n} avoids abelian cubes, whereas $X_{n} i$ ends with an abelian cube for each $i \in \mathcal{A}_{n}$ (by induction).

Upper bound for $\ell_{3}(n) \ldots$

We have:

$$
\begin{aligned}
& X_{1}=11 \\
& X_{2}=\phi_{1}(\sigma(11)) 1=\phi_{1}(22) 1=21211 \\
& X_{3}=\phi_{1}(\sigma(21211)) 1=\phi_{1}(32322) 1=31213121211 \\
& X_{4}=\phi_{1}\left(\sigma\left(X_{3}\right)\right) 1=\phi_{1}(42324232322) 1=41213121412131213121211
\end{aligned}
$$

In general:

- $\left|X_{n}\right|=3 \cdot 2^{n-1}-1$.
- X_{n} is crucial with respect to abelian cubes: X_{n} avoids abelian cubes, whereas $X_{n} i$ ends with an abelian cube for each $i \in \mathcal{A}_{n}$ (by induction).
- Hence $\ell_{3}(n) \leq 3 \cdot 2^{n-1}-1$.

An optimal construction

- Let X be a crucial word over \mathcal{A}_{n} with respect to abelian k-th powers.

An optimal construction

- Let X be a crucial word over \mathcal{A}_{n} with respect to abelian k-th powers.
- If X is minimal, we may assume w.l.o.g. that $X n$ is an abelian k-th power, and we write:

$$
X=\Omega_{n, 1} \Omega_{n, 2} \cdots \Omega_{n, k}^{\prime}
$$

where $\Omega_{n, k}=\Omega_{n, k}^{\prime} n$ and the k blocks $\Omega_{n, j}$ are equal up to permutation.

An optimal construction

- Let X be a crucial word over \mathcal{A}_{n} with respect to abelian k-th powers.
- If X is minimal, we may assume w.l.o.g. that $X n$ is an abelian k-th power, and we write:

$$
X=\Omega_{n, 1} \Omega_{n, 2} \cdots \Omega_{n, k}^{\prime}
$$

where $\Omega_{n, k}=\Omega_{n, k}^{\prime} n$ and the k blocks $\Omega_{n, j}$ are equal up to permutation.

A construction of crucial abelian cube-free words over \mathcal{A}_{n} for $n \geq 4$:

An optimal construction

- Let X be a crucial word over \mathcal{A}_{n} with respect to abelian k-th powers.
- If X is minimal, we may assume w.l.o.g. that $X n$ is an abelian k-th power, and we write:

$$
X=\Omega_{n, 1} \Omega_{n, 2} \cdots \Omega_{n, k}^{\prime}
$$

where $\Omega_{n, k}=\Omega_{n, k}^{\prime} n$ and the k blocks $\Omega_{n, j}$ are equal up to permutation.

A construction of crucial abelian cube-free words over \mathcal{A}_{n} for $n \geq 4$:

- Basis: Minimal crucial abelian square-free words $W_{n}=W_{n, 2}$ given by Evdokimov \& Kitaev (2004). For $n=4,5,6,7$:

$$
\begin{aligned}
& W_{4,2}=342313231 \\
& W_{5,2}=4534231432341 \\
& W_{6,2}=56453423154323451 \\
& W_{7,2}=675645342316543234561, \text { where spaces separate the blocks. }
\end{aligned}
$$

An optimal construction ...

General construction of $W_{n, 2}=\Omega_{n, 1} \Omega_{n, 2}^{\prime}$ for $n \geq 4$:

- 1st block $\Omega_{n, 1}$: adjoin the factors $i(i+1)$ for $i=n-1, n-2, \ldots, 2$, followed by the letter 1 .

An optimal construction ...

General construction of $W_{n, 2}=\Omega_{n, 1} \Omega_{n, 2}^{\prime}$ for $n \geq 4$:

- 1st block $\Omega_{n, 1}$: adjoin the factors $i(i+1)$ for $i=n-1, n-2, \ldots, 2$, followed by the letter 1.

Example: For $n=4$, we have $\Omega_{4,1}=34231$.

An optimal construction ...

General construction of $W_{n, 2}=\Omega_{n, 1} \Omega_{n, 2}^{\prime}$ for $n \geq 4$:

- 1st block $\Omega_{n, 1}$: adjoin the factors $i(i+1)$ for $i=n-1, n-2, \ldots, 2$, followed by the letter 1.

$$
\text { Example: For } n=4 \text {, we have } \Omega_{4,1}=34231 \text {. }
$$

- 2nd block $\Omega_{n, 2}^{\prime}$: adjoin the factors $(n-1)(n-2) \ldots 432$, then $34 \ldots(n-2)(n-1)$, and finally the letter 1 .

An optimal construction ...

General construction of $W_{n, 2}=\Omega_{n, 1} \Omega_{n, 2}^{\prime}$ for $n \geq 4$:

- 1st block $\Omega_{n, 1}$: adjoin the factors $i(i+1)$ for $i=n-1, n-2, \ldots, 2$, followed by the letter 1 .

Example: For $n=4$, we have $\Omega_{4,1}=34231$.

- 2nd block $\Omega_{n, 2}^{\prime}$: adjoin the factors $(n-1)(n-2) \ldots 432$, then $34 \ldots(n-2)(n-1)$, and finally the letter 1 .

Example: For $n=4$, we have $\Omega_{4,2}=3231$.

An optimal construction ...

General construction of $W_{n, 2}=\Omega_{n, 1} \Omega_{n, 2}^{\prime}$ for $n \geq 4$:

- 1st block $\Omega_{n, 1}$: adjoin the factors $i(i+1)$ for $i=n-1, n-2, \ldots, 2$, followed by the letter 1.

$$
\text { Example: For } n=4 \text {, we have } \Omega_{4,1}=34231 \text {. }
$$

- 2nd block $\Omega_{n, 2}^{\prime}$: adjoin the factors $(n-1)(n-2) \ldots 432$, then $34 \ldots(n-2)(n-1)$, and finally the letter 1 .

Example: For $n=4$, we have $\Omega_{4,2}=3231$.
For $n=4,5,6,7$, we have:
$W_{4,2}=$

An optimal construction ...

General construction of $W_{n, 2}=\Omega_{n, 1} \Omega_{n, 2}^{\prime}$ for $n \geq 4$:

- 1st block $\Omega_{n, 1}$: adjoin the factors $i(i+1)$ for $i=n-1, n-2, \ldots, 2$, followed by the letter 1.

$$
\text { Example: For } n=4 \text {, we have } \Omega_{4,1}=34231 \text {. }
$$

- 2nd block $\Omega_{n, 2}^{\prime}$: adjoin the factors $(n-1)(n-2) \ldots 432$, then $34 \ldots(n-2)(n-1)$, and finally the letter 1 .

Example: For $n=4$, we have $\Omega_{4,2}=3231$.
For $n=4,5,6,7$, we have:
$W_{4,2}=34$

An optimal construction ...

General construction of $W_{n, 2}=\Omega_{n, 1} \Omega_{n, 2}^{\prime}$ for $n \geq 4$:

- 1st block $\Omega_{n, 1}$: adjoin the factors $i(i+1)$ for $i=n-1, n-2, \ldots, 2$, followed by the letter 1.

$$
\text { Example: For } n=4 \text {, we have } \Omega_{4,1}=34231 \text {. }
$$

- 2nd block $\Omega_{n, 2}^{\prime}$: adjoin the factors $(n-1)(n-2) \ldots 432$, then $34 \ldots(n-2)(n-1)$, and finally the letter 1 .

Example: For $n=4$, we have $\Omega_{4,2}=3231$.
For $n=4,5,6,7$, we have:
$W_{4,2}=3423$

An optimal construction ...

General construction of $W_{n, 2}=\Omega_{n, 1} \Omega_{n, 2}^{\prime}$ for $n \geq 4$:

- 1st block $\Omega_{n, 1}$: adjoin the factors $i(i+1)$ for $i=n-1, n-2, \ldots, 2$, followed by the letter 1.

$$
\text { Example: For } n=4 \text {, we have } \Omega_{4,1}=34231 \text {. }
$$

- 2nd block $\Omega_{n, 2}^{\prime}$: adjoin the factors $(n-1)(n-2) \ldots 432$, then $34 \ldots(n-2)(n-1)$, and finally the letter 1 .

Example: For $n=4$, we have $\Omega_{4,2}=3231$.
For $n=4,5,6,7$, we have:
$W_{4,2}=34231$

An optimal construction ...

General construction of $W_{n, 2}=\Omega_{n, 1} \Omega_{n, 2}^{\prime}$ for $n \geq 4$:

- 1st block $\Omega_{n, 1}$: adjoin the factors $i(i+1)$ for $i=n-1, n-2, \ldots, 2$, followed by the letter 1.

$$
\text { Example: For } n=4 \text {, we have } \Omega_{4,1}=34231 \text {. }
$$

- 2nd block $\Omega_{n, 2}^{\prime}$: adjoin the factors $(n-1)(n-2) \ldots 432$, then $34 \ldots(n-2)(n-1)$, and finally the letter 1 .

Example: For $n=4$, we have $\Omega_{4,2}=3231$.
For $n=4,5,6,7$, we have:
$W_{4,2}=3423132$

An optimal construction ...

General construction of $W_{n, 2}=\Omega_{n, 1} \Omega_{n, 2}^{\prime}$ for $n \geq 4$:

- 1st block $\Omega_{n, 1}$: adjoin the factors $i(i+1)$ for $i=n-1, n-2, \ldots, 2$, followed by the letter 1.

$$
\text { Example: For } n=4 \text {, we have } \Omega_{4,1}=34231 \text {. }
$$

- 2nd block $\Omega_{n, 2}^{\prime}$: adjoin the factors $(n-1)(n-2) \ldots 432$, then $34 \ldots(n-2)(n-1)$, and finally the letter 1 .

Example: For $n=4$, we have $\Omega_{4,2}=3231$.
For $n=4,5,6,7$, we have:
$W_{4,2}=34231323$

An optimal construction ...

General construction of $W_{n, 2}=\Omega_{n, 1} \Omega_{n, 2}^{\prime}$ for $n \geq 4$:

- 1st block $\Omega_{n, 1}$: adjoin the factors $i(i+1)$ for $i=n-1, n-2, \ldots, 2$, followed by the letter 1.

$$
\text { Example: For } n=4 \text {, we have } \Omega_{4,1}=34231 \text {. }
$$

- 2nd block $\Omega_{n, 2}^{\prime}$: adjoin the factors $(n-1)(n-2) \ldots 432$, then $34 \ldots(n-2)(n-1)$, and finally the letter 1 .

Example: For $n=4$, we have $\Omega_{4,2}=3231$.
For $n=4,5,6,7$, we have:
$W_{4,2}=34231$ 3231,

An optimal construction ...

General construction of $W_{n, 2}=\Omega_{n, 1} \Omega_{n, 2}^{\prime}$ for $n \geq 4$:

- 1st block $\Omega_{n, 1}$: adjoin the factors $i(i+1)$ for $i=n-1, n-2, \ldots, 2$, followed by the letter 1.

$$
\text { Example: For } n=4 \text {, we have } \Omega_{4,1}=34231 \text {. }
$$

- 2nd block $\Omega_{n, 2}^{\prime}$: adjoin the factors $(n-1)(n-2) \ldots 432$, then $34 \ldots(n-2)(n-1)$, and finally the letter 1 .

Example: For $n=4$, we have $\Omega_{4,2}=3231$.
For $n=4,5,6,7$, we have:
$W_{4,2}=34231$ 3231,
$W_{5,2}=$

An optimal construction ...

General construction of $W_{n, 2}=\Omega_{n, 1} \Omega_{n, 2}^{\prime}$ for $n \geq 4$:

- 1st block $\Omega_{n, 1}$: adjoin the factors $i(i+1)$ for $i=n-1, n-2, \ldots, 2$, followed by the letter 1.

$$
\text { Example: For } n=4 \text {, we have } \Omega_{4,1}=34231 \text {. }
$$

- 2nd block $\Omega_{n, 2}^{\prime}$: adjoin the factors $(n-1)(n-2) \ldots 432$, then $34 \ldots(n-2)(n-1)$, and finally the letter 1 .

Example: For $n=4$, we have $\Omega_{4,2}=3231$.
For $n=4,5,6,7$, we have:
$W_{4,2}=34231$ 3231,
$W_{5,2}=45$

An optimal construction ...

General construction of $W_{n, 2}=\Omega_{n, 1} \Omega_{n, 2}^{\prime}$ for $n \geq 4$:

- 1st block $\Omega_{n, 1}$: adjoin the factors $i(i+1)$ for $i=n-1, n-2, \ldots, 2$, followed by the letter 1.

$$
\text { Example: For } n=4 \text {, we have } \Omega_{4,1}=34231 \text {. }
$$

- 2nd block $\Omega_{n, 2}^{\prime}$: adjoin the factors $(n-1)(n-2) \ldots 432$, then $34 \ldots(n-2)(n-1)$, and finally the letter 1 .

Example: For $n=4$, we have $\Omega_{4,2}=3231$.
For $n=4,5,6,7$, we have:
$W_{4,2}=34231$ 3231,
$W_{5,2}=4534$

An optimal construction ...

General construction of $W_{n, 2}=\Omega_{n, 1} \Omega_{n, 2}^{\prime}$ for $n \geq 4$:

- 1st block $\Omega_{n, 1}$: adjoin the factors $i(i+1)$ for $i=n-1, n-2, \ldots, 2$, followed by the letter 1.

$$
\text { Example: For } n=4 \text {, we have } \Omega_{4,1}=34231 \text {. }
$$

- 2nd block $\Omega_{n, 2}^{\prime}$: adjoin the factors $(n-1)(n-2) \ldots 432$, then $34 \ldots(n-2)(n-1)$, and finally the letter 1 .

Example: For $n=4$, we have $\Omega_{4,2}=3231$.
For $n=4,5,6,7$, we have:
$W_{4,2}=34231$ 3231,
$W_{5,2}=453423$

An optimal construction ...

General construction of $W_{n, 2}=\Omega_{n, 1} \Omega_{n, 2}^{\prime}$ for $n \geq 4$:

- 1st block $\Omega_{n, 1}$: adjoin the factors $i(i+1)$ for $i=n-1, n-2, \ldots, 2$, followed by the letter 1.

$$
\text { Example: For } n=4 \text {, we have } \Omega_{4,1}=34231 \text {. }
$$

- 2nd block $\Omega_{n, 2}^{\prime}$: adjoin the factors $(n-1)(n-2) \ldots 432$, then $34 \ldots(n-2)(n-1)$, and finally the letter 1 .

Example: For $n=4$, we have $\Omega_{4,2}=3231$.
For $n=4,5,6,7$, we have:
$W_{4,2}=34231$ 3231,
$W_{5,2}=4534231$

An optimal construction ...

General construction of $W_{n, 2}=\Omega_{n, 1} \Omega_{n, 2}^{\prime}$ for $n \geq 4$:

- 1st block $\Omega_{n, 1}$: adjoin the factors $i(i+1)$ for $i=n-1, n-2, \ldots, 2$, followed by the letter 1.

$$
\text { Example: For } n=4 \text {, we have } \Omega_{4,1}=34231 \text {. }
$$

- 2nd block $\Omega_{n, 2}^{\prime}$: adjoin the factors $(n-1)(n-2) \ldots 432$, then $34 \ldots(n-2)(n-1)$, and finally the letter 1 .

Example: For $n=4$, we have $\Omega_{4,2}=3231$.
For $n=4,5,6,7$, we have:
$W_{4,2}=34231$ 3231,
$W_{5,2}=4534231432$

An optimal construction ...

General construction of $W_{n, 2}=\Omega_{n, 1} \Omega_{n, 2}^{\prime}$ for $n \geq 4$:

- 1st block $\Omega_{n, 1}$: adjoin the factors $i(i+1)$ for $i=n-1, n-2, \ldots, 2$, followed by the letter 1.

$$
\text { Example: For } n=4 \text {, we have } \Omega_{4,1}=34231 \text {. }
$$

- 2nd block $\Omega_{n, 2}^{\prime}$: adjoin the factors $(n-1)(n-2) \ldots 432$, then $34 \ldots(n-2)(n-1)$, and finally the letter 1 .

Example: For $n=4$, we have $\Omega_{4,2}=3231$.
For $n=4,5,6,7$, we have:
$W_{4,2}=34231$ 3231,
$W_{5,2}=453423143234$

An optimal construction ...

General construction of $W_{n, 2}=\Omega_{n, 1} \Omega_{n, 2}^{\prime}$ for $n \geq 4$:

- 1st block $\Omega_{n, 1}$: adjoin the factors $i(i+1)$ for $i=n-1, n-2, \ldots, 2$, followed by the letter 1.

$$
\text { Example: For } n=4 \text {, we have } \Omega_{4,1}=34231 \text {. }
$$

- 2nd block $\Omega_{n, 2}^{\prime}$: adjoin the factors $(n-1)(n-2) \ldots 432$, then $34 \ldots(n-2)(n-1)$, and finally the letter 1 .

Example: For $n=4$, we have $\Omega_{4,2}=3231$.
For $n=4,5,6,7$, we have:
$W_{4,2}=34231$ 3231,
$W_{5,2}=4534231432341$,

An optimal construction ...

General construction of $W_{n, 2}=\Omega_{n, 1} \Omega_{n, 2}^{\prime}$ for $n \geq 4$:

- 1st block $\Omega_{n, 1}$: adjoin the factors $i(i+1)$ for $i=n-1, n-2, \ldots, 2$, followed by the letter 1 .

Example: For $n=4$, we have $\Omega_{4,1}=34231$.

- 2nd block $\Omega_{n, 2}^{\prime}$: adjoin the factors $(n-1)(n-2) \ldots 432$, then $34 \ldots(n-2)(n-1)$, and finally the letter 1 .

Example: For $n=4$, we have $\Omega_{4,2}=3231$.
For $n=4,5,6,7$, we have:
$W_{4,2}=34231$ 3231,
$W_{5,2}=4534231432341$,
$W_{6,2}=56453423154323451$,
$W_{7,2}=675645342316543234561$.

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231$

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow \underline{34231} \underline{34231} 3231$
Duplicate 1st block

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow 3423134231 \underline{134} 3231$
Append 134 to 2nd block

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow 34 \underline{2} 231342311343231$
Duplicate rightmost x for each $x \neq 2$ in 1st \& 3rd blocks

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow 3442331342311343231$
Duplicate rightmost x for each $x \neq 2$ in 1st \& 3rd blocks

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow 34423311342311343231$
Duplicate rightmost x for each $x \neq 2$ in 1st \& 3rd blocks

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow 3442331134231134323 \underline{3} 1$
Duplicate rightmost x for each $x \neq 2$ in 1st \& 3rd blocks

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow 3442331134231134323311$
Duplicate rightmost x for each $x \neq 2$ in 1st \& 3rd blocks

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow 34423311342311343233411$
Insert 4 before leftmost 1 in 3rd block

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow 34423311342311343233411=W_{4,3}$

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow 34423311342311343233411=W_{4,3}$
$W_{5,2}=4534231432341$

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow 34423311342311343233411=W_{4,3}$
$W_{5,2}=4534231432341$
$\longrightarrow \underline{4534231} 4534231432341$
Duplicate 1st block

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow 34423311342311343233411=W_{4,3}$
$W_{5,2}=4534231432341$
$\longrightarrow 453423145342311345432341$
Append 1345 to 2nd block

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow 34423311342311343233411=W_{4,3}$
$W_{5,2}=4534231432341$
$\longrightarrow 4553423145342311345432341$
Duplicate rightmost x for each $x \neq 2$ in 1st \& 3rd blocks

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow 34423311342311343233411=W_{4,3}$
$W_{5,2}=4534231432341$
$\longrightarrow 45534 \underline{4231} 45342311345432341$
Duplicate rightmost x for each $x \neq 2$ in 1st \& 3rd blocks

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow 34423311342311343233411=W_{4,3}$
$W_{5,2}=4534231432341$
$\longrightarrow 455344233145342311345432341$
Duplicate rightmost x for each $x \neq 2$ in 1st \& 3rd blocks

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow 34423311342311343233411=W_{4,3}$
$W_{5,2}=4534231432341$
$\longrightarrow 4553442331145342311345432341$
Duplicate rightmost x for each $x \neq 2$ in 1st \& 3rd blocks

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow 34423311342311343233411=W_{4,3}$
$W_{5,2}=4534231432341$
$\longrightarrow 45534423311453423113454323341$
Duplicate rightmost x for each $x \neq 2$ in 1st \& 3rd blocks

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow 34423311342311343233411=W_{4,3}$
$W_{5,2}=4534231432341$
$\longrightarrow 4553442331145342311345432334 \underline{1}$
Duplicate rightmost x for each $x \neq 2$ in 1st \& 3rd blocks

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow 34423311342311343233411=W_{4,3}$
$W_{5,2}=4534231432341$
$\longrightarrow 4553442331145342311345432334411$
Duplicate rightmost x for each $x \neq 2$ in 1st \& 3rd blocks

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow 34423311342311343233411=W_{4,3}$
$W_{5,2}=4534231432341$
$\longrightarrow 45534423311453423113454323344 \underline{511}$
Insert 5 before leftmost 1 in 3rd block

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:

$$
W_{4,2}=342313231 \longrightarrow 34423311342311343233411=W_{4,3}
$$
$$
W_{5,2}=4534231432341
$$
$$
\longrightarrow 45534423311453423113454323344511=W_{5,3}
$$

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:

$$
\begin{aligned}
& W_{4,2}=342313231 \longrightarrow 34423311342311343233411=W_{4,3} \\
& W_{5,2}=4534231432341 \\
& \longrightarrow 45534423311453423113454323344511=W_{5,3}
\end{aligned}
$$

$$
W_{6,2}=56453423154323451
$$

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:

$$
\begin{aligned}
& W_{4,2}=342313231 \longrightarrow 34423311342311343233411=W_{4,3} \\
& W_{5,2}=4534231432341 \\
& \longrightarrow 45534423311453423113454323344511=W_{5,3}
\end{aligned}
$$

$W_{6,2}=56453423154323451$
$\longrightarrow \underline{56453423156453423154323451}$
Duplicate 1st block

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:

$$
\begin{aligned}
& W_{4,2}=342313231 \longrightarrow 34423311342311343233411=W_{4,3} \\
& W_{5,2}=4534231432341 \\
& \longrightarrow 45534423311453423113454323344511=W_{5,3}
\end{aligned}
$$

$W_{6,2}=56453423154323451$
$\longrightarrow 5645342315645342311345654323451$
Append 13456 to 2nd block

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:

$$
\begin{aligned}
& W_{4,2}=342313231 \longrightarrow 34423311342311343233411=W_{4,3} \\
& W_{5,2}=4534231432341 \\
& \longrightarrow 45534423311453423113454323344511=W_{5,3}
\end{aligned}
$$

$$
W_{6,2}=56453423154323451
$$

$\longrightarrow 56 \underline{6} 45 \underline{5} 34442331115645342311345654323 \underline{3} 44551 \underline{1}$
Duplicate rightmost x for each $x \neq 2$ in 1st \& 3rd blocks

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow 34423311342311343233411=W_{4,3}$
$W_{5,2}=4534231432341$
$\longrightarrow 45534423311453423113454323344511=W_{5,3}$
$W_{6,2}=56453423154323451$
$\longrightarrow 56645534423311564534231134565432334455611$
Insert 6 before leftmost 1 in 3rd block

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow 34423311342311343233411=W_{4,3}$
$W_{5,2}=4534231432341$
$\longrightarrow 45534423311453423113454323344511=W_{5,3}$
$W_{6,2}=56453423154323451$
$\longrightarrow 56645534423311564534231134565432334455611=W_{6,3}$

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:

$$
\begin{aligned}
& W_{4,2}=342313231 \longrightarrow 34423311342311343233411=W_{4,3} \\
& W_{5,2}=4534231432341 \\
& \longrightarrow 45534423311453423113454323344511=W_{5,3}
\end{aligned}
$$

$$
W_{6,2}=56453423154323451
$$

$\longrightarrow 56645534423311564534231134565432334455611=W_{6,3}$
$W_{7,2}=675645342316543234561$
\qquad

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow 34423311342311343233411=W_{4,3}$
$W_{5,2}=4534231432341$
$\longrightarrow 45534423311453423113454323344511=W_{5,3}$
$W_{6,2}=56453423154323451$
$\longrightarrow 56645534423311564534231134565432334455611=W_{6,3}$
$W_{7,2}=675645342316543234561$
$\longrightarrow \underline{67564534231} \underline{67564534231} 6543234561$

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow 34423311342311343233411=W_{4,3}$
$W_{5,2}=4534231432341$
$\longrightarrow 45534423311453423113454323344511=W_{5,3}$
$W_{6,2}=56453423154323451$
$\longrightarrow 56645534423311564534231134565432334455611=W_{6,3}$
$W_{7,2}=675645342316543234561$
$\longrightarrow 67564534231675645342311345676543234561$

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow 34423311342311343233411=W_{4,3}$
$W_{5,2}=4534231432341$
$\longrightarrow 45534423311453423113454323344511=W_{5,3}$
$W_{6,2}=56453423154323451$
$\longrightarrow 56645534423311564534231134565432334455611=W_{6,3}$
$W_{7,2}=675645342316543234561$
$\longrightarrow 67 \underline{7} 56 \underline{6} 45 \underline{5} 344 \underline{4} 23 \underline{3} 1 \underline{1} 67564534231134567654323 \underline{3} 4 \underline{4} 5 \underline{5} 6 \underline{6} 1 \underline{1}$

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow 34423311342311343233411=W_{4,3}$
$W_{5,2}=4534231432341$
$\longrightarrow 45534423311453423113454323344511=W_{5,3}$
$W_{6,2}=56453423154323451$
$\longrightarrow 56645534423311564534231134565432334455611=W_{6,3}$
$W_{7,2}=675645342316543234561$
$\longrightarrow 67756645534423311675645342311345676543233445566711$

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow 34423311342311343233411=W_{4,3}$
$W_{5,2}=4534231432341$
$\longrightarrow 45534423311453423113454323344511=W_{5,3}$
$W_{6,2}=56453423154323451$
$\longrightarrow 56645534423311564534231134565432334455611=W_{6,3}$
$W_{7,2}=675645342316543234561$
$\longrightarrow 67756645534423311675645342311345676543233445566711$

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow 34423311342311343233411=W_{4,3}$
$W_{5,2}=4534231432341$
$\longrightarrow 45534423311453423113454323344511=W_{5,3}$
$W_{6,2}=56453423154323451$
$\longrightarrow 56645534423311564534231134565432334455611=W_{6,3}$
$W_{7,2}=675645342316543234561$
$\longrightarrow 67756645534423311675645342311345676543233445566711$
Note:

$$
W_{n, 3}=\underbrace{(n-1) n n \Omega_{n-1,1}}_{\Omega_{n, 1}} \underbrace{(n-1) n \Omega_{n-1,2} n}_{\Omega_{n, 2}} \underbrace{(n-1) \Omega_{n-1,3}^{\prime}[11]^{-1}(n-1) n 11}_{\Omega_{n, 3}^{\prime}} .
$$

An optimal construction ...

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n, 3}$ from $W_{n, 2} \ldots$ Construction of $W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}$:
$W_{4,2}=342313231 \longrightarrow \underline{34423311} \underline{34231134} \underline{3233411}=W_{4,3}$
$W_{5,2}=4534231432341$
$\longrightarrow \underline{45534423311 ~} \underline{45} 34231134 \underline{5} 432334 \underline{4} 11=W_{5,3}$
$W_{6,2}=56453423154323451$

$W_{7,2}=675645342316543234561$
$\longrightarrow \underline{67756645534423311} \underline{67564534231134567} \underline{6543233445566711}$
Note:

$$
W_{n, 3}=\underbrace{(n-1) n n \Omega_{n-1,1}}_{\Omega_{n, 1}} \underbrace{(n-1) n \Omega_{n-1,2} n}_{\Omega_{n, 2}} \underbrace{(n-1) \Omega_{n-1,3}^{\prime}[11]^{-1}(n-1) n 11}_{\Omega_{n, 3}^{\prime}} .
$$

An optimal construction ...

- By construction:

$$
W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}
$$

where $\Omega_{n, 3}=\Omega_{n, 3}^{\prime} n$ and each $\Omega_{n, i}$ contains two 1 's, one 2 , two n 's, and three x 's for $x=3, \ldots, n-1$.

An optimal construction ...

- By construction:

$$
W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}
$$

where $\Omega_{n, 3}=\Omega_{n, 3}^{\prime} n$ and each $\Omega_{n, i}$ contains two 1 's, one 2 , two n 's, and three x 's for $x=3, \ldots, n-1$.

- Hence, $\left|W_{n, 3}\right|=3(3(n-3)+2 \cdot 2+1)-1=9 n-13$.

An optimal construction ...

- By construction:

$$
W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}
$$

where $\Omega_{n, 3}=\Omega_{n, 3}^{\prime} n$ and each $\Omega_{n, i}$ contains two 1 's, one 2 , two n 's, and three x 's for $x=3, \ldots, n-1$.

- Hence, $\left|W_{n, 3}\right|=3(3(n-3)+2 \cdot 2+1)-1=9 n-13$.
- Moreover, $W_{n, 3}$ is crucial with respect to abelian cubes.

An optimal construction ...

- By construction:

$$
W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}
$$

where $\Omega_{n, 3}=\Omega_{n, 3}^{\prime} n$ and each $\Omega_{n, i}$ contains two 1 's, one 2 , two n 's, and three x 's for $x=3, \ldots, n-1$.

- Hence, $\left|W_{n, 3}\right|=3(3(n-3)+2 \cdot 2+1)-1=9 n-13$.
- Moreover, $W_{n, 3}$ is crucial with respect to abelian cubes.

For instance: it is easy to check that

$$
W_{4,3}=34423311342311343233411
$$

is an abelian cube-free crucial word on 4 letters. Use same arguments for $n>4$.

An optimal construction ...

- By construction:

$$
W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}
$$

where $\Omega_{n, 3}=\Omega_{n, 3}^{\prime} n$ and each $\Omega_{n, i}$ contains two 1 's, one 2 , two n 's, and three x 's for $x=3, \ldots, n-1$.

- Hence, $\left|W_{n, 3}\right|=3(3(n-3)+2 \cdot 2+1)-1=9 n-13$.
- Moreover, $W_{n, 3}$ is crucial with respect to abelian cubes.
- Thus, a minimal crucial word avoiding abelian cubes has length at most $9 n-13$ for $n \geq 4$.

An optimal construction ...

- By construction:

$$
W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}
$$

where $\Omega_{n, 3}=\Omega_{n, 3}^{\prime} n$ and each $\Omega_{n, i}$ contains two 1 's, one 2 , two n 's, and three x 's for $x=3, \ldots, n-1$.

- Hence, $\left|W_{n, 3}\right|=3(3(n-3)+2 \cdot 2+1)-1=9 n-13$.
- Moreover, $W_{n, 3}$ is crucial with respect to abelian cubes.
- Thus, a minimal crucial word avoiding abelian cubes has length at most $9 n-13$ for $n \geq 4$.

Theorem (G.-Halldórsson-Kitaev, 2008)

For $n \geq 4$, we have $\ell_{3}(n) \leq 9 n-13$.

An optimal construction ...

- By construction:

$$
W_{n, 3}=\Omega_{n, 1} \Omega_{n, 2} \Omega_{n, 3}^{\prime}
$$

where $\Omega_{n, 3}=\Omega_{n, 3}^{\prime} n$ and each $\Omega_{n, i}$ contains two 1 's, one 2 , two n 's, and three x 's for $x=3, \ldots, n-1$.

- Hence, $\left|W_{n, 3}\right|=3(3(n-3)+2 \cdot 2+1)-1=9 n-13$.
- Moreover, $W_{n, 3}$ is crucial with respect to abelian cubes.
- Thus, a minimal crucial word avoiding abelian cubes has length at most $9 n-13$ for $n \geq 4$.

Theorem (G.-Halldórsson-Kitaev, 2008)
For $n \geq 4$, we have $\ell_{3}(n) \leq 9 n-13$.
This upper bound is optimal ...

Lower bound for $\ell_{3}(n)$

Let X be a crucial abelian cube-free word over \mathcal{A}_{n} such that $X n$ is an abelian cube.

- Sort in non-decreasing order the \# of occurrences of the letters $1,2, \ldots, n-1$ in X to obtain the sequence $\left(a_{1} \leq a_{2} \leq \ldots \leq a_{n-1}\right)$.

Lower bound for $\ell_{3}(n)$

Let X be a crucial abelian cube-free word over \mathcal{A}_{n} such that $X n$ is an abelian cube.

- Sort in non-decreasing order the \# of occurrences of the letters $1,2, \ldots, n-1$ in X to obtain the sequence $\left(a_{1} \leq a_{2} \leq \ldots \leq a_{n-1}\right)$.
- Denote by a_{0} the number of occurrences of the letter n in X.

Lower bound for $\ell_{3}(n)$

Let X be a crucial abelian cube-free word over \mathcal{A}_{n} such that $X n$ is an abelian cube.

- Sort in non-decreasing order the \# of occurrences of the letters $1,2, \ldots, n-1$ in X to obtain the sequence $\left(a_{1} \leq a_{2} \leq \ldots \leq a_{n-1}\right)$.
- Denote by a_{0} the number of occurrences of the letter n in X.

Note:

- $|X|=\sum_{i=0}^{n-1} a_{i}$.

Lower bound for $\ell_{3}(n)$

Let X be a crucial abelian cube-free word over \mathcal{A}_{n} such that $X n$ is an abelian cube.

- Sort in non-decreasing order the \# of occurrences of the letters $1,2, \ldots, n-1$ in X to obtain the sequence $\left(a_{1} \leq a_{2} \leq \ldots \leq a_{n-1}\right)$.
- Denote by a_{0} the number of occurrences of the letter n in X.

Note:

- $|X|=\sum_{i=0}^{n-1} a_{i}$.
- $a_{0} \equiv 2(\bmod 3)$ and $a_{i} \equiv 0(\bmod 3)$ for all $i=1,2, \ldots, n-1$.

Lower bound for $\ell_{3}(n)$

Let X be a crucial abelian cube-free word over \mathcal{A}_{n} such that $X n$ is an abelian cube.

- Sort in non-decreasing order the \# of occurrences of the letters $1,2, \ldots, n-1$ in X to obtain the sequence $\left(a_{1} \leq a_{2} \leq \ldots \leq a_{n-1}\right)$.
- Denote by a_{0} the number of occurrences of the letter n in X.

Note:

- $|X|=\sum_{i=0}^{n-1} a_{i}$.
- $a_{0} \equiv 2(\bmod 3)$ and $a_{i} \equiv 0(\bmod 3)$ for all $i=1,2, \ldots, n-1$.
- The crucial word $W_{n, 3}$ of length $9 n-13$ has sequence:

$$
\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)=(5,3,6,9, \ldots, 9) .
$$

Lower bound for $\ell_{3}(n)$

Let X be a crucial abelian cube-free word over \mathcal{A}_{n} such that $X n$ is an abelian cube.

- Sort in non-decreasing order the \# of occurrences of the letters $1,2, \ldots, n-1$ in X to obtain the sequence $\left(a_{1} \leq a_{2} \leq \ldots \leq a_{n-1}\right)$.
- Denote by a_{0} the number of occurrences of the letter n in X.

Note:

- $|X|=\sum_{i=0}^{n-1} a_{i}$.
- $a_{0} \equiv 2(\bmod 3)$ and $a_{i} \equiv 0(\bmod 3)$ for all $i=1,2, \ldots, n-1$.
- The crucial word $W_{n, 3}$ of length $9 n-13$ has sequence:

$$
\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)=(5,3,6,9, \ldots, 9) .
$$

We prove that for $n \geq 5$ this sequence cannot be "improved" by decreasing one or more of its terms, no matter how the crucial word is constructed.

Lower bound for $\ell_{3}(n)$...

That is, for a crucial abelian cube-free word X over \mathcal{A}_{n} :

- $\left(a_{1}, a_{2}\right) \neq(3,3)$;
- the sequence of a_{i} 's cannot contain $6,6,6$;
- the sequence of a_{i} 's cannot contain $3,6,6$;
- $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right) \neq(2,3,6,9,9)$.

Lower bound for $\ell_{3}(n) \ldots$

That is, for a crucial abelian cube-free word X over \mathcal{A}_{n} :

- $\left(a_{1}, a_{2}\right) \neq(3,3)$;
- the sequence of a_{i} 's cannot contain 6,6,6;
- the sequence of a_{i} 's cannot contain $3,6,6$;
- $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right) \neq(2,3,6,9,9)$.

Consequently:

Theorem (G.-Halldórsson-Kitaev, 2008)

For $n \geq 5$, we have $\ell_{3}(n) \geq 9 n-13$.

Lower bound for $\ell_{3}(n) \ldots$

That is, for a crucial abelian cube-free word X over \mathcal{A}_{n} :

- $\left(a_{1}, a_{2}\right) \neq(3,3)$;
- the sequence of a_{i} 's cannot contain $6,6,6$;
- the sequence of a_{i} 's cannot contain $3,6,6$;
- $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right) \neq(2,3,6,9,9)$.

Consequently:

Theorem (G.-Halldórsson-Kitaev, 2008)

For $n \geq 5$, we have $\ell_{3}(n) \geq 9 n-13$.
Corollary (G.-Halldórsson-Kitaev, 2008)
For $n \geq 5$, we have $\ell_{3}(n)=9 n-13$.

Lower bound for $\ell_{3}(n) \ldots$

That is, for a crucial abelian cube-free word X over \mathcal{A}_{n} :

- $\left(a_{1}, a_{2}\right) \neq(3,3)$;
- the sequence of a_{i} 's cannot contain 6,6,6;
- the sequence of a_{i} 's cannot contain $3,6,6$;
- $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right) \neq(2,3,6,9,9)$.

Consequently:

Theorem (G.-Halldórsson-Kitaev, 2008)

For $n \geq 5$, we have $\ell_{3}(n) \geq 9 n-13$.
Corollary (G.-Halldórsson-Kitaev, 2008)
For $n \geq 5$, we have $\ell_{3}(n)=9 n-13$.
Note: $\ell_{3}(n)=2,5,11,20$ for $n=1,2,3,4$, respectively.

Lower bound for $\ell_{3}(n) \ldots$

That is, for a crucial abelian cube-free word X over \mathcal{A}_{n} :

- $\left(a_{1}, a_{2}\right) \neq(3,3)$;
- the sequence of a_{i} 's cannot contain $6,6,6$;
- the sequence of a_{i} 's cannot contain $3,6,6$;
- $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right) \neq(2,3,6,9,9)$.

Consequently:

Theorem (G.-Halldórsson-Kitaev, 2008)

For $n \geq 5$, we have $\ell_{3}(n) \geq 9 n-13$.
Corollary (G.-Halldórsson-Kitaev, 2008)
For $n \geq 5$, we have $\ell_{3}(n)=9 n-13$.
Note: $\ell_{3}(n)=2,5,11,20$ for $n=1,2,3,4$, respectively.
For example: 11, 21211, 11231321211, 42131214231211321211.

Outline

(1) Background

- Repetitions \& patterns in words
- Crucial words \& abelian powers
(2) Minimal crucial words avoiding abelian cubes
- Upper bound for length
- Lower bound for length
(3) Minimal crucial words avoiding abelian k-th powers
- Upper bound for length
- Lower bound for length
(4) Further research

Upper bound for $\ell_{k}(n)$

- Z_{n}^{k} crucial with respect to abelian k-th powers $\Longrightarrow \ell_{k}(n) \leq k^{n}-1$.

Upper bound for $\ell_{k}(n)$

- Z_{n}^{k} crucial with respect to abelian k-th powers $\Longrightarrow \ell_{k}(n) \leq k^{n}-1$.

Improvement:

Use a similar greedy construction as for abelian cubes by putting $(k-2)$ 1's (instead of only one 1) to the right of each letter...

Upper bound for $\ell_{k}(n)$

- Z_{n}^{k} crucial with respect to abelian k-th powers $\Longrightarrow \ell_{k}(n) \leq k^{n}-1$.

Improvement:

Use a similar greedy construction as for abelian cubes by putting $(k-2)$ 1's (instead of only one 1) to the right of each letter...

Theorem (G.-Halldórsson-Kitaev, 2008)

For $k \geq 3$, we have $\ell_{k}(n) \leq k \cdot(k-1)^{n-1}-1$.

Upper bound for $\ell_{k}(n)$

- Z_{n}^{k} crucial with respect to abelian k-th powers $\Longrightarrow \ell_{k}(n) \leq k^{n}-1$.

Improvement:

Use a similar greedy construction as for abelian cubes by putting $(k-2)$ 1's (instead of only one 1) to the right of each letter...

Theorem (G.-Halldórsson-Kitaev, 2008)

For $k \geq 3$, we have $\ell_{k}(n) \leq k \cdot(k-1)^{n-1}-1$.
For $n \geq 4$ and $k \geq 2$, we construct a crucial abelian k-power-free word $W_{n, k}$ of length $k^{2}(n-1)-k-1$ using the same method as before.

Upper bound for $\ell_{k}(n)$

- Z_{n}^{k} crucial with respect to abelian k-th powers $\Longrightarrow \ell_{k}(n) \leq k^{n}-1$.

Improvement:

Use a similar greedy construction as for abelian cubes by putting $(k-2)$ 1's (instead of only one 1) to the right of each letter...

Theorem (G.-Halldórsson-Kitaev, 2008)

For $k \geq 3$, we have $\ell_{k}(n) \leq k \cdot(k-1)^{n-1}-1$.
For $n \geq 4$ and $k \geq 2$, we construct a crucial abelian k-power-free word $W_{n, k}$ of length $k^{2}(n-1)-k-1$ using the same method as before. Hence:

Theorem (G.-Halldórsson-Kitaev, 2008)

For $n \geq 4$ and $k \geq 2$, we have $\ell_{k}(n) \leq k^{2}(n-1)-k-1$.

Upper bound for $\ell_{k}(n) \ldots$

Note:

- $\left|W_{n, 2}\right|=4 n-7$ and $\left|W_{n, 3}\right|=9 n-13 \longrightarrow W_{n, 2}$ and $W_{n, 3}$ are minimal crucial words over \mathcal{A}_{n} avoiding abelian squares and abelian cubes, respectively.

Upper bound for $\ell_{k}(n) \ldots$

Note:

- $\left|W_{n, 2}\right|=4 n-7$ and $\left|W_{n, 3}\right|=9 n-13 \longrightarrow W_{n, 2}$ and $W_{n, 3}$ are minimal crucial words over \mathcal{A}_{n} avoiding abelian squares and abelian cubes, respectively.
- In the case of $k \geq 4$, we make the following conjecture.

Conjecture (G.-Halldórsson-Kitaev, 2008)

For $k \geq 4$ and sufficiently large n, the length of a minimal crucial word over \mathcal{A}_{n} avoiding abelian k-th powers is given by $k^{2}(n-1)-k-1$.

Lower bound for $\ell_{k}(n)$

- Trivial lower bound: $\ell_{k}(n) \geq n k-1$ as all letters except n must occur at least k times, whereas n must occur at least $k-1$ times.

Lower bound for $\ell_{k}(n)$

- Trivial lower bound: $\ell_{k}(n) \geq n k-1$ as all letters except n must occur at least k times, whereas n must occur at least $k-1$ times.
- A slight improvement using results in the case of abelian cubes...

> Theorem (G.-Halldórsson-Kitaev, 2008)
> For $n \geq 5$ and $k \geq 4$, we have $\ell_{k}(n) \geq k(3 n-4)-1$.

Outline

(1) Background

- Repetitions \& patterns in words
- Crucial words \& abelian powers
(2) Minimal crucial words avoiding abelian cubes
- Upper bound for length
- Lower bound for length
(3) Minimal crucial words avoiding abelian k-th powers
- Upper bound for length
- Lower bound for length
(4) Further research

Problem 1 - Prove or disprove the conjecture: $\ell_{k}(n)=k^{2}(n-1)-k-1$.

Problem 1 - Prove or disprove the conjecture: $\ell_{k}(n)=k^{2}(n-1)-k-1$.

Problem 2 - Maximal words of minimal length.

- A word W over \mathcal{A}_{n} is maximal with respect to a given set of prohibitions if W avoids the prohibitions, but $x W$ and $W x$ do not avoid the prohibitions for any letter $x \in \mathcal{A}_{n}$.

Problem 1 - Prove or disprove the conjecture: $\ell_{k}(n)=k^{2}(n-1)-k-1$.

Problem 2 - Maximal words of minimal length.

- A word W over \mathcal{A}_{n} is maximal with respect to a given set of prohibitions if W avoids the prohibitions, but $x W$ and $W x$ do not avoid the prohibitions for any letter $x \in \mathcal{A}_{n}$.
- Example: 323121 is a maximal abelian square-free word over $\{1,2,3\}$ of minimal length.

Problem 1 - Prove or disprove the conjecture: $\ell_{k}(n)=k^{2}(n-1)-k-1$.

Problem 2 - Maximal words of minimal length.

- A word W over \mathcal{A}_{n} is maximal with respect to a given set of prohibitions if W avoids the prohibitions, but $x W$ and $W x$ do not avoid the prohibitions for any letter $x \in \mathcal{A}_{n}$.
- Example: 323121 is a maximal abelian square-free word over $\{1,2,3\}$ of minimal length.
- The length of a minimal crucial word gives a lower bound for the length of a shortest maximal word.

Question: Can we use our approach to tackle the problem of finding maximal words of minimal length?

Question: Can we use our approach to tackle the problem of finding maximal words of minimal length?

- Korn (2003): the length $\ell(n)$ of a shortest maximal abelian square-free word over \mathcal{A}_{n} satisfies

$$
4 n-7 \leq \ell(n) \leq 6 n-10 \quad \text { for } n \geq 6
$$

Question: Can we use our approach to tackle the problem of finding maximal words of minimal length?

- Korn (2003): the length $\ell(n)$ of a shortest maximal abelian square-free word over \mathcal{A}_{n} satisfies

$$
4 n-7 \leq \ell(n) \leq 6 n-10 \quad \text { for } n \geq 6
$$

- Bullock (2004): $6 n-29 \leq \ell(n) \leq 6 n-12$ for $n \geq 8$.

Question: Can we use our approach to tackle the problem of finding maximal words of minimal length?

- Korn (2003): the length $\ell(n)$ of a shortest maximal abelian square-free word over \mathcal{A}_{n} satisfies

$$
4 n-7 \leq \ell(n) \leq 6 n-10 \quad \text { for } n \geq 6
$$

- Bullock (2004): $6 n-29 \leq \ell(n) \leq 6 n-12$ for $n \geq 8$.

Question: Can our approach improve Bullock's result or can it provide an alternative solution?

Takk Fyrir!

