5,310 research outputs found
Conductive lithographic films
This paper reports progress in the development of a novel fabrication technique for printing circuit board designs directly onto suitable substrates. Circuit tracks can be formed on organic or synthetic substrates by depositing films of a metal-loaded ink via a standard lithographic printing process. The application of this work is in substitutes for conventional (copper-clad resin/laminate) circuit boards where, for low complexity circuits, directly printed substrates offer cost advantages and environmental benefits. The paper is a resume of work and results, including; ink formulation, environmental test, circuit modelling and life cycle analysis. Conductive lithographic films have now been successfully demonstrated in a telephone handset developed in conjunction with Nortel, microprocessor and microwave stripline applications. Whilst developed primarily as a low cost, low environmental impact alternative to subtractive PCB manufacture, other potential advantages such as flexibility and environmental robustness are apparent
Recommended from our members
Lithographic technology for microwave integrated circuits
Conductive lithographic films (CLFs) have been developed primarily as substitutes for resin/laminate boards, which share properties with the metallisation patterns used in planar microwave integrated circuits (MICs). The authors examine the microwave properties of the films and show that, although the losses are greater, they have potential as an alternative to the traditional manufacturing process of MICs
Homology modelling of transferrin-binding protein A from Neisseria meningitidis
Neisseria meningitidis, a causative agent of bacterial
meningitis, obtains transferrin-bound iron by expressing
two outer membrane located transferrin-binding proteins,
TbpA and TbpB. TbpA is thought to be an integral outer
membrane pore that facilitates iron uptake. Evidence suggests
that TbpA is a useful antigen for inclusion in a vaccine
effective against meningococcal disease, hence the identification
of regions involved in ligand binding is of paramount
importance to design strategies to block uptake of iron. The
protein shares sequence and functional similarities to the
Escherichia coli siderophore receptors FepA and FhuA,
whose structures have been determined. These receptors
are composed of two domains, a 22-stranded b-barrel and
an N-terminal plug region that sits within the barrel and
occludes the transmembrane pore. A three-dimensional
TbpA model was constructed using FepA and FhuA structural
templates, hydrophobicity analysis and homology
modelling. TbpA was found to possess a similar architecture
to the siderophore receptors. In addition to providing
insights into the highly immunogenic nature of TbpA and
allowing the prediction of potentially important ligandbinding
epitopes, the model also reveals a narrow channel
through its entire length. The relevance of this channel and
the spatial arrangement of external loops, to the mechanism
of iron translocation employed by TbpA is discussed
Test structures to characterise a novel circuit fabrication technique that uses offset lithography
This paper reports on the use of microelectronic test structures to characterise a novel fabrication technique for thin-film electronic circuit boards. In this technology, circuit tracks are formed on paper-like substrates by depositing films of a metal-loaded ink via a standard lithographic printing process. Sheet resistance and line width are electrically evaluated and these quantities are compared with optical and surface profiling measurements
Genomic dynamics of transposable elements in the western clawed frog (Silurana tropicalis)
Transposable elements (TEs) are repetitive DNA sequences that can make new copies of themselves that are inserted elsewhere in a host genome. The abundance and distributions of TEs vary considerably among phylogenetically diverse hosts. With the aim of exploring the basis of this variation, we evaluated correlations between several genomic variables and the presence of TEs and non-TE repeats in the complete genome sequence of the Western clawed frog (Silurana tropicalis). This analysis reveals patterns of TE insertion consistent with gene disruption but not with the insertional preference model. Analysis of non-TE repeats recovered unique features of their genome-wide distribution when compared with TE repeats, including no strong correlation with exons and a particularly strong negative correlation with GC content. We also collected polymorphism data from 25 TE insertion sites in 19 wild-caught S. tropicalis individuals. DNA transposon insertions were fixed at eight of nine sites and at a high frequency at one of nine, whereas insertions of long terminal repeat (LTR) and non-LTR retrotransposons were fixed at only 4 of 16 sites and at low frequency at 12 of 16. A maximum likelihood model failed to attribute these differences in insertion frequencies to variation in selection pressure on different classes of TE, opening the possibility that other phenomena such as variation in rates of replication or duration of residence in the genome could play a role. Taken together, these results identify factors that sculpt heterogeneity in TE distribution in S. tropicalis and illustrate that genomic dynamics differ markedly among TE classes and between TE and non-TE repeats.published_or_final_versio
Do glucocorticoids predict fitness? Linking environmental conditions, corticosterone and reproductive success in the blue tit, Cyanistes caeruleus
Glucocorticoids, including corticosterone (CORT), have been suggested to provide a physiological link between ecological conditions and fitness. Specifically, CORT, which is elevated in response to harsh conditions, is predicted to be correlated with reduced fitness. Yet, empirical studies show that CORT can be non-significantly, positively and negatively linked with fitness. Divergent environmental conditions between years or study systems may influence whether CORT is linked to fitness. To test this, we monitored free-living blue tits (
Cyanistes caeruleus
) during breeding over 3 years. We quantified foraging conditions during brood rearing, and examined whether they were correlated with parental baseline CORT and reproductive success. We then tested whether CORT predicted fitness. Elevated parental CORT was associated with lower temperatures, greater rainfall and lower territory-scale oak density. Whereas asynchrony with the caterpillar food peak was correlated with reduced nestling mass and fledging success, but not parental CORT. Only low temperatures were associated with both reduced nestling mass and elevated parental CORT. Despite this, parents with elevated CORT had lighter offspring in all years. Contrarily, in 2009 parental CORT was positively correlated with the number fledged. The absence of a direct link between the foraging conditions that reduce nestling quality and elevate parental CORT suggests that parental CORT may provide a holistic measure of conditions where parents are working harder to meet the demands of developing young. As the positive correlation between parental CORT and fledging success differed between years, this suggests that contrasting conditions between years can influence correlations between parental CORT and fitness. Ultimately, as CORT concentrations are intrinsically variable and linked to the prevalent conditions, studies that incorporate environmental harshness will improve our understanding of evolutionary endocrinology.
</jats:p
Revisiting stigmergy in light of multi-functional, biogenic, termite structures as communication channel
Termite mounds are fascinating because of their intriguing composition of numerous geometric shapes and materials. However, little is known about these structures, or of their functionalities. Most research has been on the basic composition of mounds compared with surrounding soils. There has been some targeted research on the thermoregulation and ventilation of the mounds of a few species of fungi-growing termites, which has generated considerable interest from human architecture. Otherwise, research on termite mounds has been scattered, with little work on their explicit properties. This review is focused on how termites design and build functional structures as nest, nursery and food storage; for thermoregulation and climatisation; as defence, shelter and refuge; as a foraging tool or building material; and for colony communication, either as in indirect communication (stigmergy) or as an information channel essential for direct communication through vibrations (biotremology). Our analysis shows that systematic research is required to study the properties of these structures such as porosity and material composition. High resolution computer tomography in combination with nonlinear dynamics and methods from computational intelligence may provide breakthroughs in unveiling the secrets of termite behaviour and their mounds. In particular, the examination of dynamic and wave propagation properties of termite-built structures in combination with a detailed signal analysis of termite activities is required to better understand the interplay between termites and their nest as superorganism. How termite structures serve as defence in the form of disguising acoustic and vibration signals from detection by predators, and what role local and global vibration synchronisation plays for building are open questions that need to be addressed to provide insights into how termites utilise materials to thrive in a world of predators and competitors
Morphological and moisture availability controls of the leaf area-to-sapwood area ratio: Analysis of measurements on Australian trees
© 2015 Published by John Wiley & Sons Ltd. The leaf area-to-sapwood area ratio (LA:SA) is a key plant trait that links photosynthesis to transpiration. The pipe model theory states that the sapwood cross-sectional area of a stem or branch at any point should scale isometrically with the area of leaves distal to that point. Optimization theory further suggests that LA:SA should decrease toward drier climates. Although acclimation of LA:SA to climate has been reported within species, much less is known about the scaling of this trait with climate among species. We compiled LA:SA measurements from 184 species of Australian evergreen angiosperm trees. The pipe model was broadly confirmed, based on measurements on branches and trunks of trees from one to 27 years old. Despite considerable scatter in LA:SA among species, quantile regression showed strong (0.2 < R1 < 0.65) positive relationships between two climatic moisture indices and the lowermost (5%) and uppermost (5-15%) quantiles of log LA:SA, suggesting that moisture availability constrains the envelope of minimum and maximum values of LA:SA typical for any given climate. Interspecific differences in plant hydraulic conductivity are probably responsible for the large scatter of values in the mid-quantile range and may be an important determinant of tree morphology. We compiled LA:SA measurements from 183 species of Australian evergreen angiosperm trees. The pipe model was broadly confirmed. LA:SA quantile regression showed positive relationships between two climatic moisture indices and the lowermost and uppermost quantiles
Ectopic cardiovascular fat in middle-aged men: effects of race/ethnicity, overall and central adiposity. The ERA JUMP study.
Background/objectivesHigher volumes of ectopic cardiovascular fat (ECF) are associated with greater risk of coronary heart disease (CHD). Identifying factors that are associated with ECF volumes may lead to new preventive efforts to reduce risk of CHD. Significant racial/ethnic differences exist for overall and central adiposity measures, which are known to be associated with ECF volumes. Whether racial/ethnic differences also exist for ECF volumes and their associations with these adiposity measures remain unclear.Subjects/methodsBody mass index (BMI), computerized tomography-measured ECF volumes (epicardial, pericardial and their summation) and visceral adipose tissue (VAT) were examined in a community-based sample of 1199 middle-aged men (24.2% Caucasians, 7.0% African-Americans, 23.6% Japanese-Americans, 22.0% Japanese, 23.2% Koreans).ResultsSignificant racial/ethnic differences existed in ECF volumes and their relationships with BMI and VAT. ECF volumes were the highest among Japanese-Americans and the lowest among African-Americans. The associations of BMI and VAT with ECF differed by racial/ethnic groups. Compared with Caucasians, for each 1-unit increase in BMI, African-Americans had lower, whereas Koreans had higher increases in ECF volumes (P-values<0.05 for both). Meanwhile, compared with Caucasians, for each 1-unit increase in log-transformed VAT, African-Americans, Japanese-Americans and Japanese had similar increases, whereas Koreans had a lower increase in ECF volumes (P-value<0.05).ConclusionsRacial/ethnic groups differed in their propensity to accumulate ECF at increasing level of overall and central adiposity. Future studies should evaluate whether reducing central adiposity or overall weight will decrease ECF volumes more in certain racial/ethnic groups. Evaluating these questions might help in designing race-specific prevention strategy of CHD risk associated with higher ECF
- âŠ