15 research outputs found

    Human Polycomb 2 Protein Is a SUMO E3 Ligase and Alleviates Substrate-Induced Inhibition of Cystathionine β-Synthase Sumoylation

    Get PDF
    Human cystathionine β-synthase (CBS) catalyzes the first irreversible step in the transsulfuration pathway and commits homocysteine to the synthesis of cysteine. Mutations in CBS are the most common cause of severe hereditary hyperhomocysteinemia. A yeast two-hybrid approach to screen for proteins that interact with CBS had previously identified several components of the sumoylation pathway and resulted in the demonstration that CBS is a substrate for sumoylation. In this study, we demonstrate that sumoylation of CBS is enhanced in the presence of human polycomb group protein 2 (hPc2), an interacting partner that was identified in the initial yeast two-hybrid screen. When the substrates for CBS, homocysteine and serine for cystathionine generation and homocysteine and cysteine for H2S generation, are added to the sumoylation mixture, they inhibit the sumoylation reaction, but only in the absence of hPc2. Similarly, the product of the CBS reaction, cystathionine, inhibits sumoylation in the absence of hPc2. Sumoylation in turn decreases CBS activity by ∼28% in the absence of hPc2 and by 70% in its presence. Based on these results, we conclude that hPc2 serves as a SUMO E3 ligase for CBS, increasing the efficiency of sumoylation. We also demonstrate that γ-cystathionase, the second enzyme in the transsulfuration pathway is a substrate for sumoylation under in vitro conditions. We speculate that the role of this modification may be for nuclear localization of the cysteine-generating pathway under conditions where nuclear glutathione demand is high

    Cystathionine beta-synthase mutants exhibit changes in protein unfolding: conformational analysis of misfolded variants in crude cell extracts

    Get PDF
    Protein misfolding has been proposed to be a common pathogenic mechanism in many inborn errors of metabolism including cystathionine β-synthase (CBS) deficiency. In this work, we describe the structural properties of nine CBS mutants that represent a common molecular pathology in the CBS gene. Using thermolysin in two proteolytic techniques, we examined conformation of these mutants directly in crude cell extracts after expression in E. coli. Proteolysis with thermolysin under native conditions appeared to be a useful technique even for very unstable mutant proteins, whereas pulse proteolysis in a urea gradient had limited values for the study of the majority of CBS mutants due to their instability. Mutants in the active core had either slightly increased unfolding (p.A114V, p.E302K and p.G307S) or extensive unfolding with decreased stability (p.H65R, p.T191M, p.I278T and p.R369C). The extent of the unfolding inversely correlated with the previously determined degree of tetrameric assembly and with the catalytic activity. In contrast, mutants bearing aminoacid substitutions in the C-terminal regulatory domain (p.R439Q and p.D444N) had increased global stability with decreased flexibility. This study shows that proteolytic techniques can reveal conformational abnormalities even for CBS mutants that have activity and/or a degree of assembly similar to the wild-type enzyme. We present here a methodological strategy that may be used in cell lysates to evaluate properties of proteins that tend to misfold and aggregate and that may be important for conformational studies of disease-causing mutations in the field of inborn errors of metabolism

    Alleviation of intrasteric inhibition by the pathogenic activation domain mutation, D444N, in human cystathionine beta-synthase.

    No full text
    Item does not contain fulltextHuman cystathionine beta-synthase is a heme protein that catalyzes the condensation of serine and homocysteine to form cystathionine in a pyridoxal phosphate-dependent reaction. Mutations in this enzyme are the leading cause of hereditary hyperhomocysteinemia with attendant cardiovascular and other complications. The enzyme is activated approximately 2-fold by the allosteric regulator S-adenosylmethionine (AdoMet), which is presumed to bind to the C-terminal regulatory domain. The regulatory domain exerts an inhibitory effect on the enzyme, and its deletion is correlated with a 2-fold increase in catalytic activity and loss of responsiveness to AdoMet. A mutation in the C-terminal regulatory domain, D444N, displays high levels of enzyme activity, yet is pathogenic. In this study, we have characterized the biochemical penalties associated with this mutation and demonstrate that it is associated with a 4-fold lower steady-state level of cystathionine beta-synthase in a fibroblast cell line that is homozygous for the D444N mutation. The activity of the recombinant D444N enzyme mimics the activity of the wild-type enzyme seen in the presence of AdoMet and can be further activated approximately 2-fold in the presence of supraphysiolgical concentrations of the allosteric regulator. The mutation increases the K(act) for AdoMet from 7.4 +/- 0.2 to 460 +/- 130 microM, thus rendering the enzyme functionally unresponsive to AdoMet under physiological concentrations. These results indicate that the D444N mutation partially abrogates the intrasteric inhibition imposed by the C-terminal domain. We propose a model that takes into account the three kinetically distinguishable states that are observed with human cystathionine beta-synthase: "basal" (i.e., wild-type enzyme as isolated), "activated" (wild-type enzyme + AdoMet or the D444N mutant as isolated), and superactivated (D444N mutant + AdoMet or wild-type enzyme lacking the C-terminal regulatory domain)

    S-adenosylmethionine stabilizes cystathionine β-synthase and modulates redox capacity

    Get PDF
    The transsulfuration pathway converts homocysteine to cysteine and represents the metabolic link between antioxidant and methylation metabolism. The first and committing step in this pathway is catalyzed by cystathionine β-synthase (CBS), which is subject to complex regulation, including allosteric activation by the methyl donor, S-adenosylmethionine (AdoMet). In this study, we demonstrate that methionine restriction leads to a >10-fold decrease in CBS protein levels, and pulse proteolysis studies reveal that binding of AdoMet stabilizes the protein against degradation by ≈12 kcal/mol. These observations predict that under pathological conditions where AdoMet levels are diminished, CBS, and therefore glutathione levels, will be reduced. Indeed, we demonstrate this to be the case in a mouse model for spontaneous steatohepatitis in which the gene for the MAT1A isoenzyme encoding AdoMet synthetase has been disrupted, and in human hepatocellular carcinoma, where MAT1A is silenced. Furthermore, diminished CBS levels are associated with reduced cell viability in hepatoma cells challenged with tert-butyl hydroperoxide. This study uncovers a mechanism by which CBS is allosterically activated by AdoMet under normal conditions but is destabilized under pathological conditions, for redirecting the metabolic flux toward methionine conservation. A mechanistic basis for the coordinate changes in redox and methylation metabolism that are a hallmark of several complex diseases is explained by these observations

    Increased transsulfuration mediates longevity and dietary restriction in Drosophila

    No full text
    The mechanisms through which dietary restriction enhances health and longevity in diverse species are unclear. The transsulfuration pathway (TSP) is a highly conserved mechanism for metabolizing the sulfur-containing amino acids, methionine and cysteine. Here we show that Drosophila cystathionine β-synthase (dCBS), which catalyzes the rate-determining step in the TSP, is a positive regulator of lifespan in Drosophila and that the pathway is required for the effects of diet restriction on animal physiology and lifespan. dCBS activity was up-regulated in flies exposed to reduced nutrient conditions, and ubiquitous or neuron-specific transgenic overexpression of dCBS enhanced longevity in fully fed animals. Inhibition of the TSP abrogated the changes in lifespan, adiposity, and protein content that normally accompany diet restriction. RNAi-mediated knockdown of dCBS also limited lifespan extension by diet. Diet restriction reduced levels of protein translation in Drosophila, and we show that this is largely caused by increased metabolic commitment of methionine cycle intermediates to transsulfuration. However, dietary supplementation of methionine restored normal levels of protein synthesis to restricted animals without affecting lifespan, indicating that global reductions in translation alone are not required for diet-restriction longevity. Our results indicate a mechanism by which dietary restriction influences physiology and aging

    Heme interaction of the intrinsically disordered N-terminal peptide segment of human cystathionine-β-synthase

    No full text
    Abstract Cystathionine-β-synthase (CBS) belongs to a large family of pyridoxal 5’-phosphate (PLP)-dependent enzymes, responsible for the sulfur metabolism. The heme-dependent protein CBS is part of regulatory pathways also involving the gasotransmitter hydrogen sulfide. Malfunction of CBS can lead to pathologic conditions like cancer, cardiovascular and neurodegenerative disorders. Truncation of residues 1–40, absent in X-ray structures of CBS, reduces but does not abolish the activity of the enzyme. Here we report the NMR resonance assignment and heme interaction studies for the N-terminal peptide stretch of CBS. We present NMR-spectral evidence that residues 1–40 constitute an intrinsically disordered region in CBS and interact with heme via a cysteine-proline based motif
    corecore