1,768 research outputs found

    Specific immune priming in the invasive ctenophore Mnemiopsis leidyi

    Get PDF
    Specific immune priming enables an induced immune response upon repeated pathogen encounter. As a functional analogue to vertebrate immune memory, such adaptive plasticity has been described, for instance, in insects and crustaceans. However, towards the base of the metazoan tree our knowledge about the existence of specific immune priming becomes scattered. Here, we exposed the invasive ctenophore Mnemiopsis leidyi repeatedly to two different bacterial epitopes (Gram-positive or -negative) and measured gene expression. Ctenophores experienced either the same bacterial epitope twice (homologous treatments) or different bacterial epitopes (heterologous treatments). Our results demonstrate that immune gene expression depends on earlier bacterial exposure. We detected significantly different expression upon heterologous compared with homologous bacterial treatment at three immune activator and effector genes. This is the first experimental evidence for specific immune priming in Ctenophora and generally in non-bilaterian animals, hereby adding to our growing notion of plasticity in innate immune systems across all animal phyla

    Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque

    Get PDF
    Carotid intima media thickness (cIMT) and plaque determined by ultrasonography are established measures of subclinical atherosclerosis that each predicts future cardiovascular disease events. We conducted a meta-analysis of genome-wide association data in 31,211 participants of European ancestry from nine large studies in the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. We then sought additional evidence to support our findings among 11,273 individuals using data from seven additional studies. In the combined meta-analysis, we identified three genomic regions associated with common carotid intima media thickness and two different regions associated with the presence of carotid plaque (P < 5 × 10 -8). The associated SNPs mapped in or near genes related to cellular signaling, lipid metabolism and blood pressure homeostasis, and two of the regions were associated with coronary artery disease (P < 0.006) in the Coronary Artery Disease Genome-Wide Replication and Meta-Analysis (CARDIoGRAM) consortium. Our findings may provide new insight into pathways leading to subclinical atherosclerosis and subsequent cardiovascular events

    Lung function from school age to adulthood in primary ciliary dyskinesia

    Get PDF
    Primary ciliary dyskinesia (PCD) presents with symptoms early in life and the disease course may be progressive, but longitudinal data on lung function are scarce. This multinational cohort study describes lung function trajectories in children, adolescents and young adults with PCD. We analysed data from 486 patients with repeated lung function measurements obtained between the age of 6 and 24 years from the International PCD Cohort and calculated z-scores for forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC ratio using the Global Lung Function Initiative 2012 references. We described baseline lung function and change of lung function over time and described their associations with possible determinants in mixed-effects linear regression models. Overall, FEV1, FVC and FEV1/FVC z-scores declined over time (average crude annual FEV1 decline was -0.07 z-scores), but not at the same rate for all patients. FEV1 z-scores improved over time in 21% of patients, remained stable in 40% and declined in 39%. Low body mass index was associated with poor baseline lung function and with further decline. Results differed by country and ultrastructural defect, but we found no evidence of differences by sex, calendar year of diagnosis, age at diagnosis, diagnostic certainty or laterality defect. Our study shows that on average lung function in PCD declines throughout the entire period of lung growth, from childhood to young adult age, even among patients treated in specialised centres. It is essential to develop strategies to reverse this tendency and improve prognosi

    Quantifying long-term health and economic outcomes for survivors of group B Streptococcus invasive disease in infancy: protocol of a multi-country study in Argentina, India, Kenya, Mozambique and South Africa.

    Get PDF
    Sepsis and meningitis due to invasive group B Streptococcus (iGBS) disease during early infancy is a leading cause of child mortality. Recent systematic estimates of the worldwide burden of GBS suggested that there are 319,000 cases of infant iGBS disease each year, and an estimated 147,000 stillbirths and young-infant deaths, with the highest burden occurring in Sub-Saharan Africa.  The following priority data gaps were highlighted: (1) long-term outcome data after infant iGBS, including mild disability, to calculate quality-adjusted life years (QALYs) or disability-adjusted life years (DALYs) and (2) economic burden for iGBS survivors and their families. Geographic data gaps were also noted with few studies from low- and middle- income countries (LMIC), where the GBS burden is estimated to be the highest. In this paper we present the protocol for a multi-country matched cohort study designed to estimate the risk of long-term neurodevelopmental impairment (NDI), socioemotional behaviors, and economic outcomes for children who survive invasive GBS disease in Argentina, India, Kenya, Mozambique, and South Africa. Children will be identified from health demographic surveillance systems, hospital records, and among participants of previous epidemiological studies. The children will be aged between 18 months to 17 years. A tablet-based custom-designed application will be used to capture data from direct assessment of the child and interviews with the main caregiver. In addition, a parallel sub-study will prospectively measure the acute costs of hospitalization due to neonatal sepsis or meningitis, irrespective of underlying etiology. In summary, these data are necessary to characterize the consequences of iGBS disease and enable the advancement of effective strategies for survivors to reach their developmental and economic potential. In particular, our study will inform the development of a full public health value proposition on maternal GBS immunization that is being coordinated by the World Health Organization

    The lifecycle of molecular clouds in nearby star-forming disc galaxies

    Get PDF
    It remains a major challenge to derive a theory of cloud-scale (⁠â‰Č100 pc) star formation and feedback, describing how galaxies convert gas into stars as a function of the galactic environment. Progress has been hampered by a lack of robust empirical constraints on the giant molecular cloud (GMC) lifecycle. We address this problem by systematically applying a new statistical method for measuring the evolutionary timeline of the GMC lifecycle, star formation, and feedback to a sample of nine nearby disc galaxies, observed as part of the PHANGS-ALMA survey. We measure the spatially resolved (∌100 pc) CO-to-H α flux ratio and find a universal de-correlation between molecular gas and young stars on GMC scales, allowing us to quantify the underlying evolutionary timeline. GMC lifetimes are short, typically 10−30 Myr⁠, and exhibit environmental variation, between and within galaxies. At kpc-scale molecular gas surface densities ÎŁ_(H₂) ≄ 8 M_⊙ pc⁻ÂČ⁠, the GMC lifetime correlates with time-scales for galactic dynamical processes, whereas at ÎŁ_(H₂) ≀ 8 M_⊙ pc⁻ÂČ GMCs decouple from galactic dynamics and live for an internal dynamical time-scale. After a long inert phase without massive star formation traced by H α (75–90 per cent of the cloud lifetime), GMCs disperse within just 1−5 Myr once massive stars emerge. The dispersal is most likely due to early stellar feedback, causing GMCs to achieve integrated star formation efficiencies of 4–10 per cent. These results show that galactic star formation is governed by cloud-scale, environmentally dependent, dynamical processes driving rapid evolutionary cycling. GMCs and H II regions are the fundamental units undergoing these lifecycles, with mean separations of 100−300 pc in star-forming discs. Future work should characterize the multiscale physics and mass flows driving these lifecycles

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
    • 

    corecore