40 research outputs found

    Metagenomic analysis of plant viruses associated with papaya ringspot disease in Carica papaya L. in Kenya

    Get PDF
    Carica papaya L. is an important fruit crop grown by small- and large-scale farmers in Kenya for local and export markets. However, its production is constrained by papaya ringspot disease (PRSD). The disease is believed to be caused by papaya ringspot virus (PRSV). Previous attempts to detect PRSV in papaya plants showing PRSD symptoms, using enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase-polymerase chain reaction (RT-PCR) procedures with primers specific to PRSV, have not yielded conclusive results. Therefore, the nature of viruses responsible for PRSD was elucidated in papaya leaves collected from 22 counties through Illumina MiSeq next-generation sequencing (NGS) and validated by RT-PCR and Sanger sequencing. Viruses were detected in 38 out of the 48 leaf samples sequenced. Sequence analysis revealed the presence of four viruses: a Potyvirus named Moroccan watermelon mosaic virus (MWMV) and three viruses belonging to the genus Carlavirus. The Carlaviruses include cowpea mild mottle virus (CpMMV) and two putative Carlaviruses —closely related but distinct from cucumber vein-clearing virus (CuVCV) with amino acid and nucleotide sequence identities of 75.7–78.1 and 63.6–67.6%, respectively, in the coat protein genes. In reference to typical symptoms observed in the infected plants, the two putative Carlaviruses were named papaya mottle-associated virus (PaMV) and papaya mild mottle-associated virus (PaMMV). Surprisingly, and in contrast to previous studies conducted in other parts of world, PRSV was not detected. The majority of the viruses were detected as single viral infections, while a few were found to be infecting alongside another virus (for example, MWMV and PaMV). Furthermore, the NGS and RT-PCR analysis identified MWMV as being strongly associated with ringspot symptoms in infected papaya fruits. This study has provided the first complete genome sequences of these viruses isolated from papaya in Kenya, together with primers for their detection—thus proving to be an important step towards the design of long-term, sustainable disease management strategies

    African swine fever virus (ASFV): biology, genomics and genotypes circulating in sub-Saharan Africa

    Get PDF
    African swine fever (ASF) is a highly infectious and fatal haemorrhagic disease of pigs that is caused by a complex DNA virus of the genus Asfivirus and Asfarviridae African suids family. The disease is among the most devastating pig diseases worldwide including Africa. Although the disease was first reported in the 19th century, it has continued to spread in Africa and other parts of the world. Globally, the rising demand for pork and concomitant increase in transboundary movements of pigs and pork products is likely to increase the risk of transmission and spread of ASF and pose a major challenge to the pig industry. Different genotypes of the ASF virus (ASFV) with varying virulence have been associated with different outbreaks in several countries in sub-Saharan Africa (SSA) and worldwide, and understanding genotype circulation will be important for ASF prevention and control strategies. ASFV genotypes unique to Africa have also been reported in SSA. This review briefly recounts the biology, genomics and genotyping of ASFV and provides an account of the different genotypes circulating in SSA. The review also highlights prevention, control and progress on vaccine development and identifies gaps in knowledge of ASFV genotype circulation in SSA that need to be addressed

    Typology, management and smallholder farmer-preferred traits for selection of indigenous goats (Capra hisrcus) in three agro-ecological zones in the Democratic Republic of Congo

    Get PDF
    The present study aimed to assess the typology, production management, and smallholder farmer-preferred traits in selecting indigenous goats in three agro-ecological zones (AEZs) in the Democratic Republic of Congo (DR Congo). Based on a structured survey, baseline data were recorded on 320 adults and unrelated does from 202 goat farms. Hierarchical clustering on principal components revealed three clusters in the goats studied well distinguished by double and triple kidding. Prolific goats mostly clustered into cluster two and three more represented by goats of South Kivu while 82.69% of goats in Tshopo were clustered into cluster one characterized by low reproductive performances. The Canonical Discriminant Analysis revealed that the body length was an important variable both to discriminate and to classify goats from the three AEZs. Goats from Kinshasa and South Kivu were not distanced while large distance was observed between goats from Kinshasa and Tshopo (F-stat, p < 0.001). While not subjected to any good management practices, goats were considered as a source of income and saving method in smallholder farmers' households. Adaptability, resistance to disease and prolificacy were preferred traits by farmers in selecting goats. These results give the first step in the decision-making towards goat improvement in DR Congo

    Etiology of severe childhood pneumonia in the Gambia, West Africa, determined by conventional and molecular microbiological analyses of lung and pleural aspirate samples.

    Get PDF
    Molecular analyses of lung aspirates from Gambian children with severe pneumonia detected pathogens more frequently than did culture and showed a predominance of bacteria, principally Streptococcus pneumoniae, >75% being of serotypes covered by current pneumococcal conjugate vaccines. Multiple pathogens were detected frequently, notably Haemophilus influenzae (mostly nontypeable) together with S. pneumoniae

    The Diagnostic Utility of Induced Sputum Microscopy and Culture in Childhood Pneumonia.

    Get PDF
    BACKGROUND.: Sputum microscopy and culture are commonly used for diagnosing the cause of pneumonia in adults but are rarely performed in children due to difficulties in obtaining specimens. Induced sputum is occasionally used to investigate lower respiratory infections in children but has not been widely used in pneumonia etiology studies. METHODS.: We evaluated the diagnostic utility of induced sputum microscopy and culture in patients enrolled in the Pneumonia Etiology Research for Child Health (PERCH) study, a large study of community-acquired pneumonia in children aged 1-59 months. Comparisons were made between induced sputum samples from hospitalized children with radiographically confirmed pneumonia and children categorized as nonpneumonia (due to the absence of prespecified clinical and laboratory signs and absence of infiltrate on chest radiograph). RESULTS.: One induced sputum sample was available for analysis from 3772 (89.1%) of 4232 suspected pneumonia cases enrolled in PERCH. Of these, sputum from 2608 (69.1%) met the quality criterion of <10 squamous epithelial cells per low-power field, and 1162 (44.6%) had radiographic pneumonia. Induced sputum microscopy and culture results were not associated with radiographic pneumonia, regardless of prior antibiotic use, stratification by specific bacteria, or interpretative criteria used. CONCLUSIONS.: The findings of this study do not support the culture of induced sputum specimens as a diagnostic tool for pneumonia in young children as part of routine clinical practice

    The Etiology of Childhood Pneumonia in The Gambia: Findings From the Pneumonia Etiology Research for Child Health (PERCH) Study

    Get PDF
    BACKGROUND: Pneumonia remains the leading cause of death in young children globally. The changing epidemiology of pneumonia requires up-to-date data to guide both case management and prevention programs. The Gambia study site contributed a high child mortality, high pneumonia incidence, low HIV prevalence, Haemophilus influenzae type b and pneumococcal conjugate vaccines-vaccinated rural West African setting to the Pneumonia Etiology Research for Child Health (PERCH) Study. METHODS: The PERCH study was a 7-country case-control study of the etiology of hospitalized severe pneumonia in children 1-59 months of age in low and middle-income countries. Culture and nucleic acid detection methods were used to test nasopharyngeal/oropharyngeal swabs, blood, induced sputum and, in selected cases, lung or pleural fluid aspirates. Etiology was determined by integrating case and control data from multiple specimens using the PERCH integrated analysis based on Bayesian probabilistic methods. RESULTS: At The Gambia study site, 638 cases of World Health Organization-defined severe and very severe pneumonia (286 of which were chest radiograph [CXR]-positive and HIV-negative) and 654 age-frequency matched controls were enrolled. Viral causes predominated overall (viral 58% vs. bacterial 28%), and of CXR-positive cases respiratory syncytial virus (RSV) accounted for 37%, Streptococcus pneumoniae 13% and parainfluenza was responsible for 9%. Nevertheless, among very severe cases bacterial causes dominated (77% bacterial vs. 11% viral), led by S. pneumoniae (41%); Mycobacterium tuberculosis, not included in "bacterial", accounted for 9%. 93% and 80% of controls ≥1 year of age were, respectively, fully vaccinated for age against Haemophilus influenzae and S. pneumoniae. CONCLUSIONS: Viral causes, notably RSV, predominated in The Gambia overall, but bacterial causes dominated the severest cases. Efforts must continue to prevent disease by optimizing access to existing vaccines, and to develop new vaccines, notably against RSV. A continued emphasis on appropriate case management of severe pneumonia remains important

    The Genome of Caenorhabditis bovis

    Get PDF
    The free-living nematode Caenorhabditis elegans is a key laboratory model for metazoan biology. C. elegans has also become a model for parasitic nematodes despite being only distantly related to most parasitic species. All of the ∼65 Caenorhabditis species currently in culture are free-living, with most having been isolated from decaying plant or fungal matter. Caenorhabditis bovis is a particularly unusual species that has been isolated several times from the inflamed ears of Zebu cattle in Eastern Africa, where it is associated with the disease bovine parasitic otitis. C. bovis is therefore of particular interest to researchers interested in the evolution of nematode parasitism. However, as C. bovis is not in laboratory culture, it remains little studied. Here, by sampling livestock markets and slaughterhouses in Western Kenya, we successfully reisolated C. bovis from the ear of adult female Zebu. We sequenced the genome of C. bovis using the Oxford Nanopore MinION platform in a nearby field laboratory and used the data to generate a chromosome-scale draft genome sequence. We exploited this draft genome sequence to reconstruct the phylogenetic relationships of C. bovis to other Caenorhabditis species and reveal the changes in genome size and content that have occurred during its evolution. We also identified expansions in several gene families that have been implicated in parasitism in other nematode species. The high-quality draft genome and our analyses thereof represent a significant advancement in our understanding of this unusual Caenorhabditis species

    Comprehensive transcriptome of the maize stalk borer, Busseola fusca, from multiple tissue types, developmental stages, and parasitoid wasp exposures

    Get PDF
    International audienc
    corecore