703 research outputs found
Nominal exchange rates and net foreign assets' dynamics: The stabilization role of valuation effects
This paper proposes a parsimonious OLG model with output shocks to shed light on the impact of the nominal exchange rate on the dynamics of net foreign assets through valuation effects. We show that an increase in the share of world GDP leads to a trade surplus and negative valuation effects through an appreciation of the nominal exchange rate. The lack of perfect arbitrage in the model implies that the valuation channel is a key component of the process of external adjustment, consistently with the empirical literature. Finally, we provide empirical evidence in support of the role of the share of world GDP in generating trade balance and exchange rate/valuation effects dynamics
Nominal Exchange Rates and Net Foreign Assets' Dynamics: the Stabilization Role of Valuation Effects
Recent empirical studies have highlighted that valuation effects associated with fluctuations of nominal exchange rates are one of the key components that drive the behaviour of the net foreign assets position of a country. In this paper, we propose a two-country overlapping-generations model of nominal exchange rate determination
with endogenous portfolio choice in line with this evidence. We show that a country runs a current account deficit when its share of world GDP decreases. As the domestic currency depreciates in equilibrium, a positive wealth effect partially offsets the current deficit and therefore has a stabilizing impact on the net external position of the country.
The model rationalizes the deterioration of the US external position over the past 20 years as a consequence of the rise of emerging market countries in the world economy,
while being consistent with the fact the US have experienced positive valuation effects. Numerical results indicate that valuation effects are quantitatively relevant as they account for more than half of the cumulated US current account deficits, consistently with the data
Nominal Exchange Rates and Net Foreign Assets' Dynamics: the Stabilization Role of Valuation Effects
Recent empirical studies have highlighted that valuation effects associated with fluctuations of nominal exchange rates are one of the key components that drive the behaviour of the net foreign assets position of a country. In this paper, we propose a two-country overlapping-generations model of nominal exchange rate determination
with endogenous portfolio choice in line with this evidence. We show that a country runs a current account deficit when its share of world GDP decreases. As the domestic currency depreciates in equilibrium, a positive wealth effect partially offsets the current deficit and therefore has a stabilizing impact on the net external position of the country.
The model rationalizes the deterioration of the US external position over the past 20 years as a consequence of the rise of emerging market countries in the world economy,
while being consistent with the fact the US have experienced positive valuation effects. Numerical results indicate that valuation effects are quantitatively relevant as they account for more than half of the cumulated US current account deficits, consistently with the data
Resveratrol targets PD-L1 glycosylation and dimerization to enhance antitumor T-cell immunity
New strategies to block the immune evasion activity of programmed death ligand-1 (PD-L1) are urgently needed. When exploring the PD-L1-targeted effects of mechanistically diverse metabolism-targeting drugs, exposure to the dietary polyphenol resveratrol (RSV) revealed its differential capacity to generate a distinct PD-L1 electrophoretic migration pattern. Using biochemical assays, computer-aided docking/molecular dynamics simulations, and fluorescence microscopy, we found that RSV can operate as a direct inhibitor of glyco-PD-L1-processing enzymes (alpha-glucosidase/alpha-mannosidase) that modulate N-linked glycan decoration of PD-L1, thereby promoting the endoplasmic reticulum retention of a mannose-rich, abnormally glycosylated form of PD-L1. RSV was also predicted to interact with the inner surface of PD-L1 involved in the interaction with PD-1, almost perfectly occupying the target space of the small compound BMS-202 that binds to and induces dimerization of PD-L1. The ability of RSV to directly target PD-L1 interferes with its stability and trafficking, ultimately impeding its targeting to the cancer cell plasma membrane. Impedance-based real-time cell analysis (xCELLigence) showed that cytotoxic T-lymphocyte activity was notably exacerbated when cancer cells were previously exposed to RSV. This unforeseen immunomodulating mechanism of RSV might illuminate new approaches to restore T-cell function by targeting the PD-1/PD-L1 immunologic checkpoint with natural polyphenols
Resveratrol targets PD-L1 glycosylation and dimerization to enhance antitumor T-cell immunity
New strategies to block the immune evasion activity of programmed death ligand-1 (PD-L1) are urgently needed. When exploring the PD-L1-targeted effects of mechanistically diverse metabolism-targeting drugs, exposure to the dietary polyphenol resveratrol (RSV) revealed its differential capacity to generate a distinct PD-L1 electrophoretic migration pattern. Using biochemical assays, computer-aided docking/molecular dynamics simulations, and fluorescence microscopy, we found that RSV can operate as a direct inhibitor of glyco-PD-L1-processing enzymes (α-glucosidase/α-mannosidase) that modulate N-linked glycan decoration of PD-L1, thereby promoting the endoplasmic reticulum retention of a mannose-rich, abnormally glycosylated form of PD-L1. RSV was also predicted to interact with the inner surface of PD-L1 involved in the interaction with PD-1, almost perfectly occupying the target space of the small compound BMS-202 that binds to and induces dimerization of PD-L1. The ability of RSV to directly target PD-L1 interferes with its stability and trafficking, ultimately impeding its targeting to the cancer cell plasma membrane. Impedance-based real-time cell analysis (xCELLigence) showed that cytotoxic T-lymphocyte activity was notably exacerbated when cancer cells were previously exposed to RSV. This unforeseen immunomodulating mechanism of RSV might illuminate new approaches to restore T-cell function by targeting the PD-1/PD-L1 immunologic checkpoint with natural polyphenols
Silibinin Suppresses Tumor Cell-Intrinsic Resistance to Nintedanib and Enhances Its Clinical Activity in Lung Cancer
The anti-angiogenic agent nintedanib has been shown to prolong overall and progression-free survival in patients with advanced non-small-cell lung cancer (NSCLC) who progress after first-line platinum-based chemotherapy and second-line immunotherapy. Here, we explored the molecular basis and the clinical benefit of incorporating the STAT3 inhibitor silibinin-a flavonolignan extracted from milk thistle-into nintedanib-based schedules in advanced NSCLC. First, we assessed the nature of the tumoricidal interaction between nintedanib and silibinin and the underlying relevance of STAT3 activation in a panel of human NSCLC cell lines. NSCLC cells with poorer cytotoxic responses to nintedanib exhibited a persistent, nintedanib-unresponsive activated STAT3 state, and deactivation by co-treatment with silibinin promoted synergistic cytotoxicity. Second, we tested whether silibinin could impact the lysosomal sequestration of nintedanib, a lung cancer cell-intrinsic mechanism of nintedanib resistance. Silibinin partially, but significantly, reduced the massive lysosomal entrapment of nintedanib occurring in nintedanib-refractory NSCLC cells, augmenting the ability of nintedanib to reach its intracellular targets. Third, we conducted a retrospective, observational multicenter study to determine the efficacy of incorporating an oral nutraceutical product containing silibinin in patients with NSCLC receiving a nintedanib/docetaxel combination in second- and further-line settings (n = 59). Overall response rate, defined as the combined rates of complete and partial responses, was significantly higher in the study cohort receiving silibinin supplementation (55%) than in the control cohort (22%, p = 0.011). Silibinin therapy was associated with a significantly longer time to treatment failure in multivariate analysis (hazard ratio 0.43, p = 0.013), despite the lack of overall survival benefit (hazard ratio 0.63, p = 0.190). Molecular mechanisms dictating the cancer cell-intrinsic responsiveness to nintedanib, such as STAT3 activation and lysosomal trapping, are amenable to pharmacological intervention with silibinin. A prospective, powered clinical trial is warranted to confirm the clinical relevance of these findings in patients with advanced NSCLC
Fatty acid synthase (FASN) is a tumor-cell-intrinsic metabolic checkpoint restricting T-cell immunity
Fatty acid synthase (FASN)-catalyzed endogenous lipogenesis is a hallmark of cancer metabolism. However, whether FASN is an intrinsic mechanism of tumor cell defense against T cell immunity remains unexplored. To test this hypothesis, here we combined bioinformatic analysis of the FASN-related immune cell landscape, real-time assessment of cell-based immunotherapy efficacy in CRISPR/Cas9-based FASN gene knockout (FASN KO) cell models, and mathematical and mechanistic evaluation of FASN-driven immunoresistance. FASN expression negatively correlates with infiltrating immune cells associated with cancer suppression, cytolytic activity signatures, and HLA-I expression. Cancer cells engineered to carry a loss-of-function mutation in FASN exhibit an enhanced cytolytic response and an accelerated extinction kinetics upon interaction with cytokine-activated T cells. Depletion of FASN results in reduced carrying capacity, accompanied by the suppression of mitochondrial OXPHOS and strong downregulation of electron transport chain complexes. Targeted FASN depletion primes cancer cells for mitochondrial apoptosis as it synergizes with BCL-2/BCL-XL-targeting BH3 mimetics to render cancer cells more susceptible to T-cell-mediated killing. FASN depletion prevents adaptive induction of PD-L1 in response to interferon-gamma and reduces constitutive overexpression of PD-L1 by abolishing PD-L1 post-translational palmitoylation. FASN is a novel tumor cell-intrinsic metabolic checkpoint that restricts T cell immunity and may be exploited to improve the efficacy of T cell-based immunotherapy
Cardiovascular disease in immune-mediated inflammatory diseases: a cross-sectional analysis of 6 cohorts
Observational study[Abstract] To analyze in several immune-mediated inflammatory diseases (IMIDs) the influence of demographic and clinical-related variables on the prevalence of cardiovascular disease (CVD), and compare their standardized prevalences.Cross-sectional study, including consecutive patients diagnosed with rheumatoid arthritis, psoriatic arthritis, psoriasis, systemic lupus erythematosus, Crohn disease, or ulcerative colitis, from rheumatology, gastroenterology, and dermatology tertiary care outpatient clinics located throughout Spain, between 2007 and 2010. Our main outcome was defined as previous diagnosis of angina, myocardial infarction, peripheral vascular disease, and/or stroke. Bivariate and multivariate logistic and mixed-effects logistic regression models were performed for each condition and the overall cohort, respectively. Standardized prevalences (in subjects per 100 patients, with 95% confidence intervals) were calculated using marginal analysis.We included 9951 patients. For each IMID, traditional cardiovascular risk factors had a different contribution to CVD. Overall, older age, longer disease duration, presence of traditional cardiovascular risk factors, and male sex were independently associated with a higher CVD prevalence. After adjusting for demographic and traditional cardiovascular risk factors, systemic lupus erythematosus exhibited the highest CVD standardized prevalence, followed by rheumatoid arthritis, psoriasis, Crohn disease, psoriatic arthritis, and ulcerative colitis (4.5 [95% confidence interval (CI): 2.2, 6.8], 1.3 [95% CI: 0.8, 1.8], 0.9 [95% CI: 0.5, 1.2], 0.8 [95% CI: 0.2, 1.3], 0.6 [95% CI: 0.2, 1.0], and 0.5 [95% CI: 0.1, 0.8], respectively).Systemic lupus erythematosus, rheumatoid arthritis, and psoriasis are associated with higher prevalence of CVD compared with other IMIDs. Specific prevention programs should be established in subjects affected with these conditions to prevent CVD
Development of a tool to optimize economic and environmental feasibility of food waste chains
11 figures, 6 tables.-- Supplementary information available.The Sustainable Development Goal 12.3 focuses on food and its inedible parts that exit the supply chain and thus are lost or wasted. This work addresses the food waste problem by presenting the development of a tool to design business models to reduce the production of food waste. This has been developed within the LIFE16 project iRexfo, coordinated by the University of Perugia. The tool aims at transferring the results obtained in a pilot region (Umbria, Italy) to 4 other regions in Europe. It has been coded in Python and has a graphical user interface (GUI) to insert inputs and display outputs. The GUI has been developed in FLASK and it is hosted in the website of PythonAnywhere. A case study on the application of the software is also presented, mainly based on data retrieved in the Umbria region, Italy. Together with economic analysis, also, environmental assessment is performed.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. i-REXFO LIFE (LIFE16ENV/IT/000547) is a project funded by the EU under the LIFE 2016 program. This work has been partially funded by the GTCLC-NEG project that has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 101018756.Peer reviewe
Cardiovascular disease in immune-mediated inflammatory diseases: A cross-sectional analysis of 6 cohorts
To analyze in several immune-mediated inflammatory diseases (IMIDs) the influence of demographic and clinical-related variables on the prevalence of cardiovascular disease (CVD), and compare their standardized prevalences.Cross-sectional study, including consecutive patients diagnosed with rheumatoid arthritis, psoriatic arthritis, psoriasis, systemic lupus erythematosus, Crohn disease, or ulcerative colitis, from rheumatology, gastroenterology, and dermatology tertiary care outpatient clinics located throughout Spain, between 2007 and 2010. Our main outcome was defined as previous diagnosis of angina, myocardial infarction, peripheral vascular disease, and/or stroke. Bivariate and multivariate logistic and mixed-effects logistic regression models were performed for each condition and the overall cohort, respectively. Standardized prevalences (in subjects per 100 patients, with 95% confidence intervals) were calculated using marginal analysis.We included 9951 patients. For each IMID, traditional cardiovascular risk factors had a different contribution to CVD. Overall, older age, longer disease duration, presence of traditional cardiovascular risk factors, and male sex were independently associated with a higher CVD prevalence. After adjusting for demographic and traditional cardiovascular risk factors, systemic lupus erythematosus exhibited the highest CVD standardized prevalence, followed by rheumatoid arthritis, psoriasis, Crohn disease, psoriatic arthritis, and ulcerative colitis (4.5 [95% confidence interval (CI): 2.2, 6.8], 1.3 [95% CI: 0.8, 1.8], 0.9 [95% CI: 0.5, 1.2], 0.8 [95% CI: 0.2, 1.3], 0.6 [95% CI: 0.2, 1.0], and 0.5 [95% CI: 0.1, 0.8], respectively).Systemic lupus erythematosus, rheumatoid arthritis, and psoriasis are associated with higher prevalence of CVD compared with other IMIDs. Specific prevention programs should be established in subjects affected with these conditions to prevent CVD
- …