122 research outputs found

    Carpal tunnel syndrome: the role of the subsynovial connctive tissue

    Get PDF

    Carpal tunnel syndrome: the role of the subsynovial connctive tissue

    Get PDF

    Transverse Plane Tendon and Median Nerve Motion in the Carpal Tunnel: Ultrasound Comparison of Carpal Tunnel Syndrome Patients and Healthy Volunteers

    Get PDF
    The median nerve and flexor tendons are known to translate transversely in the carpal tunnel. The purpose of this study was to investigate these motions in differential finger motion using ultrasound, and to compare them in healthy people and carpal tunnel syndrome patients.Transverse ultrasounds clips were taken during fist, index finger, middle finger and thumb flexion in 29 healthy normal subjects and 29 CTS patients. Displacement in palmar-dorsal and radial-ulnar direction was calculated using Analyze software. Additionally, the distance between the median nerve and the tendons was calculated.We found a changed motion pattern of the median nerve in middle finger, index finger and thumb motion between normal subjects and CTS patients (p<0.05). Also, we found a changed motion direction in CTS patients of the FDS III tendon in fist and middle finger motion, and of the FDS II and flexor pollicis longus tendon in index finger and thumb motion, respectively (p<0.05). The distance between the median nerve and the FDS II or FPL tendon is significantly greater in patients than in healthy volunteers for index finger and thumb motion, respectively (p<0.05).Our results suggest a changed motion pattern of the median nerve and several tendons in carpal tunnel syndrome patients compared to normal subjects. Such motion patterns may be useful in distinguishing affected from unaffected individuals, and in studies of the pathomechanics of carpal tunnel syndrome

    Denitrification and nitrous oxide emissions from riparian forests soils exposed to prolonged nitrogen runoff

    Get PDF
    Compared to upland forests, riparian forest soils have greater potential to remove nitrate (NO3) from agricultural run-off through denitrification. It is unclear, however, whether prolonged exposure of riparian soils to nitrogen (N) loading will affect the rate of denitrification and its end products. This research assesses the rate of denitrification and nitrous oxide (N2O) emissions from riparian forest soils exposed to prolonged nutrient run-off from plant nurseries and compares these to similar forest soils not exposed to nutrient run-off. Nursery run-off also contains high levels of phosphate (PO4). Since there are conflicting reports on the impact of PO4 on the activity of denitrifying microbes, the impact of PO4 on such activity was also investigated. Bulk and intact soil cores were collected from N-exposed and non-exposed forests to determine denitrification and N2O emission rates, whereas denitrification potential was determined using soil slurries. Compared to the non-amended treatment, denitrification rate increased 2.7- and 3.4-fold when soil cores collected from both N-exposed and non-exposed sites were amended with 30 and 60 μg NO3-N g-1 soil, respectively. Net N2O emissions were 1.5 and 1.7 times higher from the N-exposed sites compared to the non-exposed sites at 30 and 60 μg NO3-N g-1 soil amendment rates, respectively. Similarly, denitrification potential increased 17 times in response to addition of 15 μg NO3-N g-1 in soil slurries. The addition of PO4 (5 μg PO4–P g-1) to soil slurries and intact cores did not affect denitrification rates. These observations suggest that prolonged N loading did not affect the denitrification potential of the riparian forest soils; however, it did result in higher N2O emissions compared to emission rates from non-exposed forests

    Efficient numerical computation and experimental study of temporally long equilibrium scour development around abutment

    Get PDF
    YesFor the abutment bed scour to reach its equilibrium state, a long flow time is needed. Hence, the employment of usual strategy of simulating such scouring event using the 3D numerical model is very time consuming and less practical. In order to develop an applicable model to consider temporally long abutment scouring process, this study modifies the common approach of 2D shallow water equations (SWEs) model to account for the sediment transport and turbulence, and provides a realistic approach to simulate the long scouring process to reach the full scour equilibrium. Due to the high demand of the 2D SWEs numerical scheme performance to simulate the abutment bed scouring, a recently proposed surface gradient upwind method (SGUM) was also used to improve the simulation of the numerical source terms. The abutment scour experiments of this study were conducted using the facility of Hydraulics Laboratory at Nanyang Technological University, Singapore to compare with the presented 2D SGUM-SWEs model. Fifteen experiments were conducted over a total period of 3059.7 hours experimental time (over 4.2 months). The comparison shows that the 2D SGUM-SWEs model gives good representation to the experimental results with the practical advantage

    Increased Serum and Musculotendinous Fibrogenic Proteins following Persistent Low-Grade Inflammation in a Rat Model of Long-Term Upper Extremity Overuse.

    Get PDF
    We examined the relationship between grip strength declines and muscle-tendon responses induced by long-term performance of a high-repetition, low-force (HRLF) reaching task in rats. We hypothesized that grip strength declines would correlate with inflammation, fibrosis and degradation in flexor digitorum muscles and tendons. Grip strength declined after training, and further in weeks 18 and 24, in reach limbs of HRLF rats. Flexor digitorum tissues of reach limbs showed low-grade increases in inflammatory cytokines: IL-1β after training and in week 18, IL-1α in week 18, TNF-α and IL-6 after training and in week 24, and IL-10 in week 24, with greater increases in tendons than muscles. Similar cytokine increases were detected in serum with HRLF: IL-1α and IL-10 in week 18, and TNF-α and IL-6 in week 24. Grip strength correlated inversely with IL-6 in muscles, tendons and serum, and TNF-α in muscles and serum. Four fibrogenic proteins, TGFB1, CTGF, PDGFab and PDGFbb, and hydroxyproline, a marker of collagen synthesis, increased in serum in HRLF weeks 18 or 24, concomitant with epitendon thickening, increased muscle and tendon TGFB1 and CTGF. A collagenolytic gelatinase, MMP2, increased by week 18 in serum, tendons and muscles of HRLF rats. Grip strength correlated inversely with TGFB1 in muscles, tendons and serum; with CTGF-immunoreactive fibroblasts in tendons; and with MMP2 in tendons and serum. Thus, motor declines correlated with low-grade systemic and musculotendinous inflammation throughout task performance, and increased fibrogenic and degradative proteins with prolonged task performance. Serum TNF-α, IL-6, TGFB1, CTGF and MMP2 may serve as serum biomarkers of work-related musculoskeletal disorders, although further studies in humans are needed

    Gender differences in the physiological responses and kinematic behaviour of elite sprint cross-country skiers

    Get PDF
    Gender differences in performance by elite endurance athletes, including runners, track cyclists and speed skaters, have been shown to be approximately 12%. The present study was designed to examine gender differences in physiological responses and kinematics associated with sprint cross-country skiing. Eight male and eight female elite sprint cross-country skiers, matched for performance, carried out a submaximal test, a test of maximal aerobic capacity (VO2max) and a shorter test of maximal treadmill speed (Vmax) during treadmill roller skiing utilizing the G3 skating technique. The men attained 17% higher speeds during both the VO2max and the Vmax tests (P < 0.05 in both cases), differences that were reduced to 9% upon normalization for fat-free body mass. Furthermore, the men exhibited 14 and 7% higher VO2max relative to total and fat-free body mass, respectively (P < 0.05 in both cases). The gross efficiency was similar for both gender groups. At the same absolute speed, men employed 11% longer cycles at lower rates, and at peak speed, 21% longer cycle lengths (P < 0.05 in all cases). The current study documents approximately 5% larger gender differences in performance and VO2max than those reported for comparable endurance sports. These differences reflect primarily the higher VO2max and lower percentage of body fat in men, since no gender differences in the ability to convert metabolic rate into work rate and speed were observed. With regards to kinematics, the gender difference in performance was explained by cycle length, not by cycle rate

    Severe loss of mechanical efficiency in COVID‐19 patients

    Get PDF
    Background: There is limited information about the impact of coronavirus disease (COVID-19) on the muscular dysfunction, despite the generalized weakness and fatigue that patients report after overcoming the acute phase of the infection. This study aimed to detect impaired muscle efficiency by evaluating delta efficiency (DE) in patients with COVID-19 compared with subjects with chronic obstructive pulmonary disease (COPD), ischaemic heart disease (IHD), and control group (CG). Methods: A total of 60 participants were assigned to four experimental groups: COVID-19, COPD, IHD, and CG (n = 15 each group). Incremental exercise tests in a cycle ergometer were performed to obtain peak oxygen uptake (VO2 peak). DE was obtained from the end of the first workload to the power output where the respiratory exchange ratio was 1. Results: A lower DE was detected in patients with COVID-19 and COPD compared with those in CG (P ≤ 0.033). However, no significant differences were observed among the experimental groups with diseases (P > 0.05). Lower VO2 peak, peak ventilation, peak power output, and total exercise time were observed in the groups with diseases than in the CG (P < 0.05). A higher VO2 , ventilation, and power output were detected in the CG compared with those in the groups with diseases at the first and second ventilatory threshold (P < 0.05). A higher power output was detected in the IHD group compared with those in the COVID-19 and COPD groups (P < 0.05) at the first and second ventilatory thresholds and when the respiratory exchange ratio was 1. A significant correlation (P < 0.001) was found between the VO2 peak and DE and between the peak power output and DE (P < 0.001). Conclusions: Patients with COVID-19 showed marked mechanical inefficiency similar to that observed in COPD and IHD patients. Patients with COVID-19 and COPD showed a significant decrease in power output compared to IHD during pedalling despite having similar response in VO2 at each intensity. Resistance training should be considered during the early phase of rehabilitation
    corecore