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ABSTRACT  

For the abutment bed scour to reach its equilibrium state, a long flow time is needed. Hence, the 

employment of usual strategy of simulating such scouring event using the 3D numerical model is 

very time consuming and less practical. In order to develop an applicable model to consider 

temporally long abutment scouring process, this study modifies the common approach of 2D 

shallow water equations (SWEs) model to account for the sediment transport and turbulence, and 

provides a realistic approach to simulate the long scouring process to reach the full scour 

equilibrium. Due to the high demand of the 2D SWEs numerical scheme performance to simulate 

the abutment bed scouring, a recently proposed surface gradient upwind method (SGUM) was 

also used to improve the simulation of the numerical source terms. The abutment scour 

experiments of this study were conducted using the facility of Hydraulics Laboratory at Nanyang 

Technological University, Singapore to compare with the presented 2D SGUM-SWEs model. 

Fifteen experiments were conducted over a total period of 3059.7 hours experimental time (over 

4.2 months). The comparison shows that the 2D SGUM-SWEs model gives good representation 

to the experimental results with the practical advantage.  

 

Keywords: Abutment; equilibrium scour; experiment; numerical computation; SGUM model; 

SWEs model; time development  

 

1  Introduction  

In the progress of the abutment structure scouring flow studies, various numerical and 

experimental models have been proposed in literature [1,2]. The review by Ettema et al. [3] 



2 
 

outlined the uncertainties involved in the abutment scour measurement and physical modelling, 

and highlighted the importance of accurate estimation of the abutment scour.  

In the experimental studies developed, the emphasis has been put on the time development of the 

scour to reach the equilibrium state due to the overwhelming fact that this time development 

carries the essential information of the abutment stability study [4,5,6]. As suggested by Dey and 

Barbhuiya [4], long duration experiment is tedious and time consuming to be performed, and 

there was a lack of good data sets about the required period to reach the equilibrium scouring 

conditions. Lim’s [7] abutment scour experiments revealed that very long duration is needed to 

reach the equilibrium scour state (up to 3 to 8 days, depending on the flow and bed sediment 

conditions). Similar conclusion of long scouring equilibrium period has also been drawn for 

bridge pier scour study by Lu et al. [8] who used 2-4 days for their experimental scour 

development. To this end, both the experimental and numerical approaches in this study are 

designed for exploring and investigating abutment scour development in a floodplain for long 

scouring period up to its equilibrium condition. The experiments were conducted for about 2 to 

23 days depending on the abutment size and flow conditions [9], whereas the numerical 

modelling was constructed by modifying the finite volume (FV) model of Pu’s [10] work. 

The previous numerical modelling studies suggested that the 3D Navier Stokes (NS)-type model 

could accurately capture the abutment scouring [11,12], but costly meshing or numerical 

advancements are usually involved, which contributes additional computational burden to the 

readily high computational cost of the 3D model. Several numerical comparisons have been 

conducted between 3D NS and 2D shallow water equations (SWEs) models on different flow 

conditions at experiments or field studied cases [13,14]. They summarised that compared the 

accuracy provided by the 3D NS model and the efficiency presented by the 2D SWEs model, the 

latter is a better choice in their respective investigated cases. A more comprehensive error 

analysis of the 2D SWEs model as compared to the 3D NS model has been recently conducted by 

Mahdizadeh et al. [15], in which same conclusion was drawn that the 2D SWEs simulations 

satisfactorily represented the turbulence flow wave applications with much better efficiency.  

After considering the literature studies, the 2D SWEs model has shown to be a tangible solution 

to estimate the long equilibrium scouring process; hence it was used in this study. The model 

shows great success in representing a wide range of complicated sediment transport and fluvial 

processes, such as presented in the studies of Cao et al. [16], Wu and Wang [17,18], Xia et al. 

[19], and Cao and Pender [20]. For the employed SWEs model to simulate the turbulence 

abutment bed scouring, the sediment transport continuity-concentration (SCC) model was used by 

adapting the non-capacity concept used in Cao et al. [16] and Cao and Pender [20]; whereas the 
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flow turbulence was simulated by a standard 2D k- model used in Younus and Chaudhry [21] 

and Cea et al. [22]. The full model of this study was constructed by the fully coupled concept, and 

it was based on the finite volume (FV) method. Numerically, the monotonic upwind scheme of 

conservative laws (MUSCL)-Hancock scheme was used with the Harten Lax van Leer-contact 

(HLLC) approximate Riemann solver to discretize the FV model. The source terms of the 

numerical scheme was treated using a surface gradient upwind method (SGUM) originally 

proposed by Pu et al. [23]. This method integrates the source term treatment into the inviscid 

discretization scheme using the upwind approach, and thus to enhance the simulation stability and 

accuracy for the heavily source terms affected bed scouring flow in this study.   

The comparison of our laboratory measurements and numerical simulations showed that the 

improved 2D SWEs model has demonstrated a good trend to capture the temporal scouring 

around abutment with good agreement up to the equilibrium scouring state. The comparison also 

showed that the simulated scour map was produced with good resemblance to the measurements, 

and it proved the predictive nature of the presented SGUM-SWEs model to reproduce the whole 

equilibrium scouring process without expensive numerical cost.  

 

2 Numerical Models   

 

2.1 Shallow water equations (SWEs) model 

In this study, the SWEs model is used to couple with the k- and SCC models. The 2D fully 

conservative shallow water equations are presented in equations (1) – (3), and it is combined with 

the terms from the SCC model as suggested by Cao et al. [16] and Cao and Pender [20], and the 

terms from the k- model as proposed by Younus and Chaudhry [21].  
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In equations (1) – (3), the variable   refers to geopotential, and is given by g h   ; where h  is 

the water depth; g  is the gravitational acceleration. u  and v  are the depth averaged flow 

velocities in streamwise and lateral directions, respectively; s  and w  are density of sediment 

and water, respectively; in which,  1w sC C     ;  1o w s      ; C  is the flux 

averaged volumetric sediment concentration;   is the sediment bed porosity; and sce  and scd  are 

sediment erosion and deposition rates, respectively. k  is the flow energy, and the depth averaged 

turbulent viscosity t  is calculated as 2 /t C k  , where 0.09C  . x , y  and t  denote the 

spatial-longitudinal, spatial-transverse and temporal domains, respectively.  

In the flow applications with erodible bed, an additional source term is implemented into the right 

hand side of equation (1) to capture the influence of the erosion rate sce  and deposition rate scd  to 

water flow, where this term represents the mass conservation of water-sediment mixture. The 

second and third terms on the right hand side of equations (2) and (3) represent the spatial 

variations of sediment concentration and momentum transfer due to the process of sediment 

exchange between the water flow and erodible bed. Ferreirra and Leal [24], Yang and Greimann 

[25], Brufau et al. [26] and more recently Xia et al. [19] had suggested that the effects of these 

two terms in equations (2) and (3) are insignificant in most flow applications.  

In equations (2) and (3), oxS  and oyS  are the bed slopes in the streamwise and lateral directions, 

respectively. The friction slope of the channel fS  in the same equations are given by  

2 2 2

4/ 3fx

n u u v
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h


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2 2 2

4/3fy

n v u v
S

h


   (4) 

where n  is the Manning's friction coefficient. 

 

2.2  Turbulence model  

The k-ε equations are coupled with the SWEs model to represent the flow turbulence. The 

equations can be presented as [21,22]  
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where   is the flow energy dissipation. Each of the parameter, hR , kR , and R  in equations (5) 

and (6) can be represented as  
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Standard values are used for the turbulence parameters in equations (5) to (7) and they are given 

as 1 1.44C  , 2 1.92C  , 1.0k  , 1.3  , and 1.0D  . 

 

2.3  Sediment transport model  

The SCC equations are employed to represent the impact of sediment transport, and these 

equations could be represented as [16,20] 

 sc sc
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  (9) 

where bz  is the mobile bed elevation. The sediment erosion and deposition rates, sce  and scd , are 

used in the source terms on the right hand side of equations (1), (8) and (9). Their evaluations 

hold a dominant role to determine the flow transport characteristics, and their simulations were 

achieved in this study by using the SGUM. 

In sediment transport modelling studies, different relationships have been suggested to determine 

sce  and scd , such as the studies by Cao et al. [16], Xia et al. [19], Zhou and Lin [27] and Valiani 

and Caleffi [28]. Among these studies, the relationships of sce  and scd  suggested by Zhou and 

Lin [27] and Valiani and Caleffi [28] have exhibited great success in a wide range of tests and 

applications due to: (1) their consideration of multiple sediment transport parameters into the 

determination of sce  and scd , and (2) their usage of empirically calibrated constants have been 

kept to a minimum. According to the suggestion of Zhou and Lin [27] and Valiani and Caleffi 

[28], we will have    

 V E
sc sc

A

w C C
d e

l


     (10) 

where Vw  is the sediment fall velocity, EC  is the equilibrium sediment concentration, and Al  is 

the dimensionless adaptation length scale for sediment; and Valiani and Caleffi [28] further 

suggested that EC  could be represented as  
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u v
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  
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in which, A  and B   are coefficients for the equilibrium concentration; ss  is the specific density 

of the sediment; and dd  is the sediment median diameter. 

The dimensionless adaptation length scale for the sediment Al  used in equation (10) can be 

represented using an empirical formula utilised in Valiani and Caleffi [28] and Armanini and Di 

Silvio [29] as presented in equation (12).  

1/6
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s

wl l l
l

h h h u

            
     

   (12) 

For the variables in equation (12), su  is the shear velocity of the flow; and Rl  is a reference level 

used as a comparison with the flow depth. Rl  is usually assumed to be of the same order of 

magnitude as the hydraulic roughness. In this study, 2R dl d  is used, as suggested by Valiani and 

Caleffi [28].  

 

2.4  Numerical scheme   

In this study, the numerical flux term was discretized using a Godunov-type Hancock scheme. 

This scheme was upgraded by a two-stage predictor-corrector time-stepping concept. The Harten 

Lax van Leer-contact (HLLC) approximate Riemann solver was used to couple with the 

Godunov-type Hancock scheme for the Riemann data reconstruction process. The slope limiter 

method was used in the HLLC solver to ensure the space discretization scheme satisfying the 

flux-limiting property. The source term of the proposed numerical scheme was modelled by a 

surface gradient upwind method (SGUM) as proposed by Pu et al. [23].  

By defining equations (1) – (3), (5) – (6) and (8) – (9) into a single vector operation, we will get  
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In equations (13) and (14), U , F  and S  represent vector forms for the flow conserved variables, 

numerical flux and source terms, respectively; Q  is the resultant velocity defined by 

2 2Q = u +v ; and   is the gradient operator that can be expressed by   x y , where 

/   ix x  and /   jy y . i  and j  are the unit vectors in streamwise and lateral directions, 

respectively.  

 

3.1  Harten Lax van Leer-Contact (HLLC) Approximate Riemann Solver  

In this study, the HLLC approximate Riemann solver used was suggested in Toro [30] and has 

been further tested in Hu et al. [31]. The HLLC numerical flux is determined by  
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Subscripts L  and R  represent the left and right regions of a solution computational cell, 

respectively; and superscript * represents the star region that separates the left and right regions. 

In HLLC solver, a wave speed *s  is employed in the star region for updating the numerical flux. 

The subscript D  in equation (16) represents the direction of the parameters (left L  or right R ). 

The wave speeds in equations (15) and (16) are given by:  
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where c  is the wave celerity ( c gh ), and at the * region, *c  is estimated as  

   *

2 4
L R L Rc c u u

c
 
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(18)  

In the shock capturing process as utilised by the HLLC solver, the “dry” water wave front has to 

be resolved before obtaining a stable algorithm. In this study, further criteria as suggested by 

Toro [30] are included to handle the water wave front condition on the left and right “dry” sides 

as follows  

Left “Dry” Side Criteria: 2 L R Rs u c , *  Ls s , and  R R Rs u c  (19)  

Right “Dry” Side Criteria: 2 R L Ls u c , *  Rs s , and  L L Ls u c  (20)  

 

3.2 Monotone Upwind–Hancock Scheme 

In this study, a robust numerical wave reconstruction scheme, Monotone Upwind Scheme for 

Conservative Laws (MUSCL), was used, in which both UL  and UR  are updated linearly 

according to their adjacent cells [30]. The MUSCL scheme gives a second order of accuracy to 

the proposed FV model, and it can be expressed as 
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  is the slope limiter in equations (21) – (22); i  represents the space step; and q  is the gradient 

of successive U . As suggested by the findings from Hu et al. [31] and Mingham and Causon 

[32], the MUSCL scheme flux in this study is determined using the van Leer slope limiter, where 

 / 1q q q      .  

A Hancock two-stage predictor-corrector scheme was utilised to update U  across the time 

domain. This approach has the advantage of being stable and could achieve second order 

accuracy over the time domain. The predictor-corrector steps are given as  

Predictor Step:  1/2
1/2 1/22


 


  


U U F FN N N N

i i i i
i

t
 (23) 

Corrector Step:  1 1/2 1/2
1/2 1/2

  
 


  


U U F FN N N N

i i i i
i

t
 (24) 

where   is the cell area (for the SWEs model); and N  represents the time step.  

The Courant-Friedrichs-Lewy stability criterion was used to ensure t  does not exceed its 

maximum allowable limit, as represented by  

 
   

    s sFLt C
Q c

   (25) 

where s i j=  represents the resultant normal unit vector; and FLC  is the Courant number, which 

is limited to 0 1FLC  . Smaller values of FLC  will give more accurate and stable results, but at 

an increasing computational expense.   

 

3.3 Source Terms Scheme 

A surface gradient upwind method (SGUM) for the numerical source terms treatment proposed 

by Pu et al. [23] was integrated into this study to describe the combined operation of F  and S  in 

equation (13). The combination of F  and S  in the numerical iterations used in the SGUM could 

improve the numerical accuracy to predict the flow under different sediment transport conditions 

(including the investigated abutment bed scouring), since these conditions are heavily source 

terms bonded. Besides improving the source terms simulation from the SCC equations, the 
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SGUM can also improve the simulation of extra source terms generated from the k-ε equations 

into the SWEs model.  

It is worth mentioning that in Pu et al. [23], the SGUM was only applied to the 1D water flow 

cases, but here it is used for the 2D SWEs model with sediment transport. With the application of 

SGUM, the MUSCL-Hancock scheme in equations (23) – (24) will become 

Predictor Step:  1/2
1/2 1/22


 


  


U U f fN N N N

i i i i
i

t
 (26) 

Corrector Step:  1 1/2 1/2
1/2 1/2

  
 


  


U U f fN N N N

i i i i
i

t
 (27)  

where f = F S .  

Similar representations of the Hancock scheme in equations (26) and (27) have also been used by 

Hu et al. [31], Mingham and Causon [32], Sanders et al. [33] and many others in their 2D SWEs 

schemes with or without considering the sediment transport, except that the source terms here 

have been integrated into the Hancock scheme by using f  as presented above.  

 

3.4 Boundary and Initial Conditions  

A double boundary condition is used for the proposed model, where two extra ghost-cells are 

utilised outside the computational space domain [31]. Two kinds of boundary are considered, the 

open and solid boundaries. For their corresponding boundary vectors BU , it can be presented as  

Solid Boundary:   TB u v k    U    (28) 

Transmissive Boundary:     TB u v k    U   (29) 

These boundary conditions are updated by using 

U UB B
m+1 m       (30) 

U UB B
m+2 m-1      (31) 

where m  is the last space step in the computational boundary excluding the ghost cells.  

 

3 Physical Model   

 

3.1  Experiment Descriptions 

The experiments of our study were conducted in an asymmetrical 19-m long two-stage channel 

located at the Hydraulics Laboratory of the Nanyang Technological University, Singapore [9,34]. 

The channel width is 1.6 m, where the floodplain is 1 m wide and the main channel is 0.6 m wide, 
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and it has a longitudinal bed slope of 0.00116. A 2.5 m long and 0.4 m deep (floodplain) sand 

recess section is installed at 11 m downstream from the flume entrance. For 2 m length upstream 

of the sand recess, the floodplain bed is coated with the same kind of sand. A tailgate is used at 

the downstream end of the channel to adjust the water level in the channel. The header tank is 

equipped with perforated steel plates and sponge layer to reduce turbulence and water surface 

undulation and to provide uniform water distribution to the channel. The inflow discharge was 

measured using a magnetic flow meter which can measure up to an accuracy of 1 m3/hr, and its 

speed is controlled using a frequency inverter controller. Velocity profiles at the approaching 

section, at 11 m from the channel entrance, were measured using a 3-D acoustic Doppler 

velocimeter (ADV) to calculate the component discharges in the floodplain and the main channel 

[34]. The water level was measured at the approaching flow section, and also along the channel to 

obtain the overall water surface elevation to an accuracy of ± 2 mm.  

The sand used in the experiment has a median size of 50 0.9 mmdd d   and a geometric 

standard deviation 84 50/g d d   of 1.05. The box-like abutment used in the experiments consists 

of three lengths 20cm, 35cm and 50cm with constant width of 5cm. All the tests were conducted 

with a single abutment installed perpendicularly to the channel sidewall at 1 m location after the 

upstream edge of the sand recess, i.e. at 12 m from the channel entrance. The scour depth was 

measured using a periscope which can be inserted into the 5 cm thick box-like abutment all the 

way to the bottom of the sand bed.  The position of the scoured bed surface was observed from 

the periscope and the time development of scour depth at the abutment nose can be measured to 

an accuracy of ±1 mm.  

For a typical test, the tailgate was first set at a sufficiently high level while the flume was slowly 

filled with water. Then the discharge was gradually raised up to the designated value while the 

tailgate was gradually adjusted to the position which gave the desired flow depth for the given 

discharge. The scour depth development was monitored and recorded for different time interval 

according to the scouring rate until there is no noticeable sand movement around the deepest part 

of the scour hole. Fig. 1 shows the schematic and photographic examples of the scour hole after it 

reached the equilibrium condition.  

For the hydraulic conditions tested herein, the scouring duration varies from 46 to 546 hours, 

where some had also run for longer period to ensure that the equilibrium scouring condition was 

reached. The flow discharges as well as the flow depth ratios were varied for the three abutment 

lengths tested. Table 1 shows the details of the hydraulic conditions, scouring duration (actual 

flow time) and equilibrium scour period for the 15 test runs conducted. Each test was given a 
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code, say Run 20-60-02. The first number refers to the abutment length, i.e., 20 cmL  , the 

second number is the discharge from the magnetic flow meter 60 l/sfmQ   and the last number is 

the flow depth ratio / 0.2f md d  , where fd  is the flow depth in the floodplain and md  in the 

flow depth in the main channel. 

 

3.2  Determination of Equilibrium Scouring Duration  

In this study, the equilibrium scouring time et  is defined as the time when the increase of scour 

depth is less than or equal to 1 mm for an observation interval of 6 to 12 hours. In cases where 

fluctuation of scour depth was observed near the equilibrium condition, the equilibrium time is 

defined as the time when the maximum scour depth was first recorded in the scour-time curve 

before the fluctuations of scour depth begins. As an example, Fig. 2 shows the scour-time curves 

for three runs with the same discharge obtained from the integration of ADV point-measured 

velocities 48 l/svelQ  , and the same flow depth ratio / 0.3f md d  , but with different abutment 

lengths: 20 cmL  , 35 cm and 50 cm. The figure hints that the equilibrium time is challenging to 

be determined as the difference in the scour depths near the equilibrium conditions are quite 

small. Due to this reason, the very long scouring duration is needed to ensure the reaching of 

equilibrium scouring state in a flow.  

 

4 Results and Discussions  

In this section, the comparisons between our experimental results and numerical computations are 

presented and discussed. Using the equilibrium scouring time et  and its corresponding 

equilibrium scour depth sed , the plots of normalised scour depth /s sed d  versus normalised time 

/ et t  are produced in Figs. 3 to 5, where sd  is the scour depth at any particular flow time t . The 

figures show that the scour-time curves are of the exponential-type function which is typical for 

pier and abutment scour [35,36]. Based on these figures, it can also be observed that the scour 

increases very rapidly in the early stage, where about 80% of /s sed d  could be reached in 20% of 

/ et t . However from the figures we can also observe that the last 20% of /s sed d  is lasted in a 

long tail that occupied 80% of / et t  towards the scouring equilibrium et t . Hence, short term 

scour data from some published literature should be examined cautiously as to whether the 

equilibrium scouring criteria can be met. 
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For the comparison of the numerical computations and the experimental measurements of the 20 

cm abutment test in Fig. 3, the proposed numerical model simulates the measured data with good 

agreement. However, the relatively small mismatches are observed at the beginning of the 

scouring in Fig. 3. Similar mismatches are also observed at the beginning of the tests with 35 cm 

and 50 cm abutments. These mismatches are believed to be caused by the initial scouring 

condition that has been heavily influenced by the secondary currents and corner flows, in which 

those flow events have not been considered in the presented numerical model. As expected, these 

mismatches are becoming lesser as / et t  increases. In Figs. 4 and 5, the comparisons of the 

/s sed d  profiles also show good correspondence between the numerical simulations and 

experimental results for the flow tests with 35cm and 50cm abutments, respectively. In 

comparison, Fig. 5 presents the best agreement between the proposed numerical simulations and 

measured data.  

Fig. 6 presents the scouring map comparison between the numerical simulation and the measured 

scoured bed contours for the experimental run 20-70-04. The figure reveals that the 2D SGUM-

SWEs simulation can well-capture the bed contours of the complicated scour hole at the heaviest 

scoured region behind the abutment. The most obvious difference of the numerical prediction and 

measurements occurs at the abutment boundary, where the corner flows are expected to be 

significant compared to all the other locations. Fig. 6 shows convincingly that the proposed 2D 

SGUM-SWEs model can be employed as a reasonable tool for simulating the abutment scouring 

flow application, due to its much lower computational cost than the 3D flow models. Moreover, 

due to the fact that the physical equilibrium abutment scour is usually a very time-consuming 

process, the SWEs-type approach should be given serious consideration for obvious practical 

reason. 

 

5 Conclusions 

In this study, a proposed fully coupled 2D shallow water numerical model was used to represent 

the physical abutment scouring process until the equilibrium scour condition was reached. The 

proposed numerical model considers all water flow continuity and momentum conditions, flow 

turbulence and sediment transport using the shallow water equations (SWEs), k- and sediment 

continuity-concentration (SCC) models, respectively. A numerical well-balanced surface gradient 

upwind method (SGUM) was implemented to improve the source terms simulation of the 

combined SWEs model. Besides the numerical works, fifteen temporally long physical 

experiments were also conducted using the facility of Hydraulic Laboratory at Nanyang 
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Technological University, Singapore over the period of 46 to 546 hours to investigate the 

abutment scour up to the equilibrium scouring state.  

Compared the numerical predictions and experimental results, we can conclude that the proposed 

SGUM-SWEs model could well simulate the abutment scour until the equilibrium scouring state 

was reached. At the initial scouring, the SGUM-SWEs simulations were found to slightly depart 

from the measured data. This observed outcome was due to the amplified scouring by the 

secondary currents and corner flows in the laboratory condition that has not been considered in 

the SGUM-SWEs model. The comparison of the numerical simulated and laboratory measured 

scouring map at the Run 20-70-04 further showed that the SGUM-SWEs model is capable to 

reproduce the complicated abutment scouring measurements with good agreement. The finding of 

this study shows that the 2D SWEs-type model is a tangible solution to represent the equilibrium 

abutment scouring. 
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Nomenclatures  

c wave celerity  

C flux averaged volumetric sediment concentration  

CE equilibrium sediment concentration  

CFL Courant number  

dd sediment median diameter  

df
 flow depth in floodplain  

dm
 flow depth in main channel  

ds
 scour depth  

dsc sediment deposition rate  

dse
 equilibrium scouring depth  

esc sediment erosion rate  

g gravitational acceleration  

h water depth  

i  space step  
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k  flow energy  

L abutment length  

lA dimensionless adaptation length scale  

m last time space  

n Manning’s friction coefficient  

N time step  

Q resultant velocity  

Qfm discharge from magnetic flow meter  

Qvel discharge obtained from integration of ADV point-measured velocities  

s wave speed  

Sf friction/energy slope of flow  

So bed slope  

ss sediment specific density  

t  time domain  

tactual actual scouring time run for an experiment  

te equilibrium scouring time  

u depth averaged flow velocity in streamwise direction  

Uf flow velocity at flood plain  

Um flow velocity at main channel 

us shear velocity  

v depth averaged flow velocity in lateral direction  

wv sediment fall velocity  

x spatial-longitudinal domain  

y spatial-transverse domain  

zb mobile bed elevation  

 gradient operator  

 flow energy dissipation  

 sediment bed porosity  

t depth averaged turbulent viscosity  

 computational cell area  

 flow geopotential  

 slope limiter  

s density of sediment  



16 
 

w density of water  

g geometric standard deviation of sediment size  

 

Subscripts and Symbols  

ADV  acoustic Doppler velocimeter  

FV finite volume  

HLLC Harten Lax van Leer-contact  

L left region 

MUSCL monotonic upwind scheme for conservative laws  

NS Navier Stokes 

R right region  

SCC sediment transport continuity-concentration 

SGUM surface gradient upwind method 

SWEs shallow water equations 

* star region  
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Table 1.  Experimental conditions 
 

No. Runs Qfm L df dm df/dm te tactual dse Uf Um Qvel 
  (l/s) (cm) (cm) (cm)  (hr) (hr) (cm) (cm/s) (cm/s) (l/s) 
1 20-50-03 50 20 6.40 21.40 0.30 96.0 120 10.0 20.18 27.64 48 
2 20-60-02 60 20 3.75 18.75 0.20 27.6 46 10.9 25.77 42.30 57 
3 20-60-03 60 20 6.40 21.40 0.30 350.0 503 15.3 24.06 30.73 55 
4 20-60-04 60 20 10.00 25.00 0.40 168.0 192 13.2 21.47 24.80 59 
5 20-70-03 70 20 6.40 21.40 0.30 53.0 71 18.6 28.26 37.67 66 
6 20-70-04 70 20 10.50 25.50 0.41 523.0 546 23.5 22.99 27.12 66 
7 35-50-02 50 35 3.75 18.75 0.20 180.0 192 9.9 20.73 36.71 49 
8 35-50-03 50 35 6.40 21.40 0.30 115.9 180 15.8 20.18 27.64 48 
9 35-50-04 50 35 10.00 25.00 0.40 168.0 174 11.2 17.68 20.63 49 
10 35-60-03 60 35 6.40 21.40 0.30 322.0 333 24.1 24.06 30.73 55 
11 35-60-04 60 35 10.00 25.00 0.40 174.0 240 19.8 21.47 24.80 59 
12 50-50-02 50 50 3.75 18.75 0.20 72.3 78 12.7 20.73 36.71 49 
13 50-50-03 50 50 6.40 21.40 0.30 44.0 78.7 15.4 20.18 27.64 48 
14 50-50-04 50 50 10.00 25.00 0.40 150.0 168 15.9 17.68 20.63 49 
15 50-60-02 60 50 3.75 18.75 0.20 43.0 138 18.5 25.77 42.30 57 

 
Note: All variables and symbols at Table 1 are presented at Nomenclatures section.   
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Figure 1(a). Typical cross sectional and plan view of a scour hole 
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Figure 1(b). Photo example of a scour hole after reaching equilibrium condition (Run 35-50-04)  
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Figure 2. Time development of scour for different abutment lengths under same discharge, Qvel = 

48 m3/s and flow depth ratio, df/dm = 0.3 
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Figure 3. Measured and numerically computed dimensionless scour depth development in 

experiment with abutment length = 20 cm  
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Figure 4. Measured and numerically computed dimensionless scour depth development in 

experiment with abutment length = 35 cm 
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Figure 5. Measured and numerically computed dimensionless scour depth development in 

experiment with abutment length = 50 cm 
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Figure 6. Bed scours comparison of Run 20-70-04 behind the abutment after reaching equilibrium 

scour of measured data (black-line contours at the left hand side) and numerical simulation (blue-

line contours at the right hand side) 

 

 

 

 

 


