1,552 research outputs found

    Computer simulation of impurity diffusion in silicon, part 1

    Get PDF
    The elementary classical models for idealized diffusion conditions are described, and the principles are then used in developing more realistic models. The practical models require some type of numerical analysis. The numerical techniques are outlined and details concerning their implementation are given. Some results are presented which were obtained with the computer programs implementing the numerical techniques with implicit and explicit methods. Special problems of impurity-rich interlayers forming between an oxide and silicon are considered. A set of computed curves for sheet resistance, junction depth, and oxide thickness for different diffusion schedules is included

    Coalescent simulation in continuous space:Algorithms for large neighbourhood size

    Get PDF
    Many species have an essentially continuous distribution in space, in which there are no natural divisions between randomly mating subpopulations. Yet, the standard approach to modelling these populations is to impose an arbitrary grid of demes, adjusting deme sizes and migration rates in an attempt to capture the important features of the population. Such indirect methods are required because of the failure of the classical models of isolation by distance, which have been shown to have major technical flaws. A recently introduced model of extinction and recolonisation in two dimensions solves these technical problems, and provides a rigorous technical foundation for the study of populations evolving in a spatial continuum. The coalescent process for this model is simply stated, but direct simulation is very inefficient for large neighbourhood sizes. We present efficient and exact algorithms to simulate this coalescent process for arbitrary sample sizes and numbers of loci, and analyse these algorithms in detail

    LANDSAT/MMS propulsion module design. Volume 1: Task 4.3, trade studies

    Get PDF
    Evaluations are presented of alternative LANDSAT follow-on launch configurations to derive the propulsion requirements for the multimission modular spacecraft (MMS). Two basic types were analyzed including use of conventional launch vehicles and shuttle-supported missions. It was concluded that two sizes of modular hydrazine propulsion modules would provide the most cost-effective combination for future missions of this spacecraft. Conceptual designs of the selected propulsion modules were performed to the depth permitting determination of mass properties and estimated costs

    Comparison of reproducibility, accuracy, sensitivity, and specificity of miRNA quantification platforms

    Get PDF
    Given the increasing interest in their use as disease biomarkers, the establishment of reproducible, accurate, sensitive, and specific platforms for microRNA (miRNA) quantification in biofluids is of high priority. We compare four platforms for these characteristics: small RNA sequencing (RNA-seq), FirePlex, EdgeSeq, and nCounter. For a pool of synthetic miRNAs, coefficients of variation for technical replicates are lower for EdgeSeq (6.9%) and RNA-seq (8.2%) than for FirePlex (22.4%); nCounter replicates are not performed. Receiver operating characteristic analysis for distinguishing present versus absent miRNAs shows small RNA-seq (area under curve 0.99) is superior to EdgeSeq (0.97), nCounter (0.94), and FirePlex (0.81). Expected differences in expression of placenta-associated miRNAs in plasma from pregnant and non-pregnant women are observed with RNA-seq and EdgeSeq, but not FirePlex or nCounter. These results indicate that differences in performance among miRNA profiling platforms impact ability to detect biological differences among samples and thus their relative utility for research and clinical use

    Extreme 13C depletion of CCl2F2 in firn air samples from NEEM, Greenland

    Get PDF
    A series of 12 high volume air samples collected from the S2 firn core during the North Greenland Eemian Ice Drilling (NEEM) 2009 campaign have been measured for mixing ratio and stable carbon isotope composition of the chlorofluorocarbon CFC-12 (CCl2F2). While the mixing ratio measurements compare favorably to other firn air studies, the isotope results show extreme 13C depletion at the deepest measurable depth (65 m), to values lower than d13C = -80‰ vs. VPDB (the international stable carbon isotope scale), compared to present day surface tropospheric measurements near -40‰. Firn air modeling was used to interpret these measurements. Reconstructed atmospheric time series indicate even larger depletions (to -120‰) near 1950 AD, with subsequent rapid enrichment of the atmospheric reservoir of the compound to the present day value. Mass-balance calculations show that this change is likely to have been caused by a large change in the isotopic composition of anthropogenic CFC-12 emissions, probably due to technological advances in the CFC production process over the last 80 yr, though direct evidence is lacking

    A new multi-gas constrained model of trace gas non-homogeneous transport in firn: evaluation and behaviour at eleven polar sites

    Get PDF
    Insoluble trace gases are trapped in polar ice at the firn-ice transition, at approximately 50 to 100 m below the surface, depending primarily on the site temperature and snow accumulation. Models of trace gas transport in polar firn are used to relate firn air and ice core records of trace gases to their atmospheric history. We propose a new model based on the following contributions. First, the firn air transport model is revised in a poromechanics framework with emphasis on the non-homogeneous properties and the treatment of gravitational settling. We then derive a nonlinear least square multi-gas optimisation scheme to calculate the effective firn diffusivity (automatic diffusivity tuning). The improvements gained by the multi-gas approach are investigated (up to ten gases for a single site are included in the optimisation process). We apply the model to four Arctic (Devon Island, NEEM, North GRIP, Summit) and seven Antarctic (DE08, Berkner Island, Siple Dome, Dronning Maud Land, South Pole, Dome C, Vostok) sites and calculate their respective depth-dependent diffusivity profiles. Among these different sites, a relationship is inferred between the snow accumulation rate and an increasing thickness of the lock-in zone defined from the isotopic composition of molecular nitrogen in firn air (denoted d15N). It is associated with a reduced diffusivity value and an increased ratio of advective to diffusive flux in deep firn, which is particularly important at high accumulation rate sites. This has implications for the understanding of d15N of N2 records in ice cores, in relation with past variations of the snow accumulation rate. As the snow accumulation rate is clearly a primary control on the thickness of the lock-in zone, our new approach that allows for the estimation of the lock-in zone width as a function of accumulation may lead to a better constraint on the age difference between the ice and entrapped gases

    Consumption of Aquatic Plants by the West Indian Manatee

    Full text link
    Because manatees (Trichechus manatus) are large aquatic herbivores they have often been considered as potential control agents for aquatic plants. Several problems are associated with this concept, and a major one has been the gap in knowledge concerning food consumption rates of manatees. We estimated food consumption by measuring chews per unit time, chews per amount of food consumed, and time spent chewing food. Data were collected on captive manatees of various sizes and used to construct regression equations that predict consumption rates based on body size. Time budget data were obtained by radiotelemetry of free-ranging animals. Estimates of consumption rates for manatees eating hydrilla (Hydrilla verticillata Royle) were compared to the estimates biomass of hydrilla in Kings Bay, Florida, the overwintering site for a large manatee populations (116 in the winter of 1980-1981). Estimates show that nearly ten times as many manatees would have been needed just to consume the standing biomass of hydrilla. The inefficiency of manatees as control agents for aquatic plants becomes even more apparent when plant productivity is included in these estimates

    Clustering, advection and patterns in a model of population dynamics with neighborhood-dependent rates

    Get PDF
    We introduce a simple model of population dynamics which considers birth and death rates for every individual that depend on the number of particles in its neighborhood. The model shows an inhomogeneous quasistationary pattern with many different clusters of particles. We derive the equation for the macroscopic density of particles, perform a linear stability analysis on it, and show that there is a finite-wavelength instability leading to pattern formation. This is the responsible for the approximate periodicity with which the clusters of particles arrange in the microscopic model. In addition, we consider the population when immersed in a fluid medium and analyze the influence of advection on global properties of the model.Comment: Some typos and some problems with the figures correcte

    Atmospheric CO2 over the last 1000 years: A high-resolution record from the West Antarctic Ice Sheet (WAIS) Divide ice core

    Get PDF
    We report a decadally resolved record of atmospheric CO2 concentration for the last 1000 years, obtained from the West Antarctic Ice Sheet (WAIS) Divide shallow ice core. The most prominent feature of the pre‐industrial period is a rapid ∼7 ppm decrease of CO2 in a span of ∼20–50 years at ∼1600 A.D. This observation confirms the timing of an abrupt atmospheric CO2 decrease of ∼10 ppm observed for that time period in the Law Dome ice core CO2 records, but the true magnitude of the decrease remains unclear. Atmospheric CO2 variations over the time period 1000–1800 A.D. are statistically correlated with northern hemispheric climate and tropical Indo‐Pacific sea surface temperature. However, the exact relationship between CO2 and climate remains elusive due to regional climate variations and/or uneven geographical data density of paleoclimate records. We observe small differences of 0 ∼ 2% (0 ∼ 6 ppm) among the high‐precision CO2 records from the Law Dome, EPICA Dronning Maud Land and WAIS Divide Antarctic ice cores. However, those records share common trends of CO2 change on centennial to multicentennial time scales, and clearly show that atmospheric CO2 has been increasing above preindustrial levels since ∼1850 A.D

    A 60 yr record of atmospheric carbon monoxide reconstructed from Greenland firn air

    Get PDF
    We present the first reconstruction of the Northern Hemisphere (NH) high latitude atmospheric carbon monoxide (CO) mole fraction from Greenland firn air. Firn air samples were collected at three deep ice core sites in Greenland (NGRIP in 2001, Summit in 2006 and NEEM in 2008). CO records from the three sites agree well with each other as well as with recent atmospheric measurements, indicating that CO is well preserved in the firn at these sites. CO atmospheric history was reconstructed back to the year 1950 from the measurements using a combination of two forward models of gas transport in firn and an inverse model. The reconstructed history suggests that Arctic CO in 1950 was 140–150 nmol mol-1, which is higher than today's values. CO mole fractions rose by 10–15 nmol mol-1 from 1950 to the 1970s and peaked in the 1970s or early 1980s, followed by a ˜ 30 nmol mol-1 decline to today's levels. We compare the CO history with the atmospheric histories of methane, light hydrocarbons, molecular hydrogen, CO stable isotopes and hydroxyl radicals (OH), as well as with published CO emission inventories and results of a historical run from a chemistry-transport model. We find that the reconstructed Greenland CO history cannot be reconciled with available emission inventories unless unrealistically large changes in OH are assumed. We argue that the available CO emission inventories strongly underestimate historical NH emissions, and fail to capture the emission decline starting in the late 1970s, which was most likely due to reduced emissions from road transportation in North America and Europe
    corecore