105 research outputs found

    Steroid hormone-related polymorphisms associate with the development of bone erosions in rheumatoid arthritis and help to predict disease progression: Results from the REPAIR consortium

    Get PDF
    Here, we assessed whether 41 SNPs within steroid hormone genes associated with erosive disease. The most relevant finding was the rheumatoid factor (RF)-specific effect of the CYP1B1, CYP2C9, ESR2, FcγR3A, and SHBG SNPs to modulate the risk of bone erosions (P = 0.004, 0.0007, 0.0002, 0.013 and 0.015) that was confirmed through meta-analysis of our data with those from the DREAM registry (P = 0.000081, 0.0022, 0.00074, 0.0067 and 0.0087, respectively). Mechanistically, we also found a gender-specific correlation of the CYP2C9rs1799853T/T genotype with serum vitamin D3 levels (P = 0.00085) and a modest effect on IL1β levels after stimulation of PBMCs or blood with LPS and PHA (P = 0.0057 and P = 0.0058). An overall haplotype analysis also showed an association of 3 ESR1 haplotypes with a reduced risk of erosive arthritis (P = 0.009, P = 0.002, and P = 0.002). Furthermore, we observed that the ESR2, ESR1 and FcγR3A SNPs influenced the immune response after stimulation of PBMCs or macrophages with LPS or Pam3Cys (P = 0.002, 0.0008, 0.0011 and 1.97•10−7). Finally, we found that a model built with steroid hormone-related SNPs significantly improved the prediction of erosive disease in seropositive patients (PRF+ = 2.46•10−8) whereas no prediction was detected in seronegative patients (PRF− = 0.36). Although the predictive ability of the model was substantially lower in the replication population (PRF+ = 0.014), we could confirm that CYP1B1 and CYP2C9 SNPs help to predict erosive disease in seropositive patients. These results are the first to suggest a RF-specific association of steroid hormone-related polymorphisms with erosive disease

    The Effects of Ash and Black Carbon (Biochar) on Germination of Different Tree Species

    Get PDF
    Forest fires generate large amounts of ash and biochar, or black carbon (BC), that cover the soil surface, interacting with the soil’s constituents and its seedbank. This study concerns reproductive ecology assessments supported by molecular characterisation to improve our understanding of the effects of fire and fire residues on the germination behaviour of 12 arboreal species with a wide geographic distribution. For this purpose, we analysed the effects of three ash and one BC concentration on the germination of Acacia dealbata Link, A. longifolia (Andrews) Willd., A. mearnsii De Wild., A. melanoxylon R. Br., Pinus nigra Arnold, P. pinaster Aiton, P. radiata D. Don, P. sylvestris L., Quercus ilex L., Q. pyrenaica Willd., Q. robur L., and Q. rubra L. Each tree species was exposed to ash and BC created from its foliage or twigs (except for Q. rubra, which was exposed to ash and BC of Ulex europaeus L.). We monitored germination percentage, the T50 parameter, and tracked the development of germination over time (up to 1 yr). The BC of A. dealbata, P. pinaster, and Q. robur was analysed by pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS) to assess the molecular composition. In six species, ash inhibited the germination, while in another five species, germination was not affected by ash or by BC. In Q. rubra, ash and BC stimulated its germination. This stimulating effect of the BC on Q. rubra is likely to be related to the chemical composition of the ash and BC obtained from Ulex feedstock. The BC of U. europaeus has a very different molecular composition than the other BC samples analysed, which, together with other factors, probably allowed for its germination stimulating effects.This study was carried out within the Project 10MDS200007PR, financed by the Xunta de Galicia; the Project AGL2013-48189-C2-2-R, financed by the Ministerio de Economía y Competitividad, Spain; and FEDERS

    Long-baseline neutrino oscillation physics potential of the DUNE experiment

    Get PDF
    The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5σ, for all ΑCP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3σ (5σ) after an exposure of 5 (10) years, for 50% of all ΑCP values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin22θ13 to current reactor experiments

    First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform

    Get PDF
    The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2× 6.1× 7.0 m3. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP\u27s performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP\u27s successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design

    Long-baseline neutrino oscillation physics potential of the DUNE experiment

    Get PDF
    The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5σ, for all δ_(CP) values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3σ (5σ) after an exposure of 5 (10) years, for 50% of all δ_(CP) values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin²θ₁₃ to current reactor experiments

    Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE’s sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach

    Experiment Simulation Configurations Approximating DUNE TDR

    Full text link
    The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment consisting of a high-power, broadband neutrino beam, a highly capable near detector located on site at Fermilab, in Batavia, Illinois, and a massive liquid argon time projection chamber (LArTPC) far detector located at the 4850L of Sanford Underground Research Facility in Lead, South Dakota. The long-baseline physics sensitivity calculations presented in the DUNE Physics TDR, and in a related physics paper, rely upon simulation of the neutrino beam line, simulation of neutrino interactions in the near and far detectors, fully automated event reconstruction and neutrino classification, and detailed implementation of systematic uncertainties. The purpose of this posting is to provide a simplified summary of the simulations that went into this analysis to the community, in order to facilitate phenomenological studies of long-baseline oscillation at DUNE. Simulated neutrino flux files and a GLoBES configuration describing the far detector reconstruction and selection performance are included as ancillary files to this posting. A simple analysis using these configurations in GLoBES produces sensitivity that is similar, but not identical, to the official DUNE sensitivity. DUNE welcomes those interested in performing phenomenological work as members of the collaboration, but also recognizes the benefit of making these configurations readily available to the wider community.Comment: 15 pages, 6 figures, configurations in ancillary files, v2 corrects a typ

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    Get PDF
    The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation.Comment: 39 pages, 19 figure
    corecore