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Background
Nowadays, little by little are appearing studies in which operations research are applied 
to solve agricultural problems for the agroindustry. See Plà et al. (2013) to review some 
opportunities and prospectives in this field. Some examples can be found for different 
sectors in the current literature, for example, a review of models for transport planning 
for the fresh fruit supply chain is presented in Soto-Silva et al. (2015). A collection of a 
variety of models applied to the agroindustry is included in Plà-Aragonés (2015), while 
Ahumada and Villalobos (2009a) review several agrifood supply chain models.

The fresh vegetable industry is a very important economic activity in Spain. Novel 
trends in Spain are related to the consumption of quality-local products. Many grocery 
shops prefer to add value to their products offering local fresh vegetables (fresh vege-
tables produced in the surroundings) rather than importing the same vegetables from 
other countries or regions at a lower cost. Green and sustainable products of proximity 
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are labels associated many times to this kind of products well appreciated by a more 
awareness consumer. Nowadays, the quality of a vegetable is not only measured through 
its appearance or flavour, but also by where it has been grown or how much traceable 
information can be offered to the final customer.

In this context, professional purchase managers in these brands have to deal with the 
problem of choosing a set of farms to contract production from season to season so as to 
minimize the overall cost while satisfying the future demand. In this way, these grocery 
shops are able to sell tasty and healthy locally-produced vegetables with full traceability, 
making the activity sustainable over time with beneficial effects for the local economy.

However, selecting a farm to grow vegetables on is a mid/long-term decision. The 
decision has to be made beforehand with the uncertainty of the future behaviour or con-
ditions of production and demand for the following season. Thus, a two-stage model 
with a “here and now” strategy is needed to deal with this kind of problem. For more 
information about stochastic programming see Birge and Louveaux (2011), Shapiro et al. 
(2014) and Prékopa (2013).

The current literature on fresh vegetable supply chain contains several examples of 
successful implementations which are focused on the maximisation of the total revenue 
for the grower. For instance, see Ahumada and Villalobos (2009b). However, there are no 
successful model focused on minimising the costs in a competitive market where com-
panies can rent or contract farms to grow up fresh vegetables. The model proposed in 
this paper is oriented to grocery shops, big retailers and distributors inside this particu-
lar context.

The objectives of the present study are:

  • Design a model capable of dealing with the decision of choosing the best set of farms 
to contract their production in the fresh vegetable production context.

  • A parallel algorithm is proposed to solve the model in order to alleviate computa-
tional load in serial procedures, to reduce computational time, and also to make pos-
sible the usage of the model by purchase managers in the agroindustry.

One of the main contributions of this paper is the proposal of a production planning 
model by a two-stage model capable of dealing with the problem of selecting suppliers in 
a fresh vegetable supply chain. This production planning model is based on the adapta-
tion of the linear Uncapacited Facility Location Problem (Cornuejols et al. 1983; Erlen-
kotter 1978), in which facilities are replaced by production contracts with suppliers. The 
model presented is very flexible and can be easily adapted to other financial contexts 
with similar characteristics and restrictions.

Numerous methods have been proposed to solve the Uncapacited Facility Location 
Problem. For example, neighbourhood search heuristic (Ghosh 2003), Lagrangian based 
heuristic (Beasley 1993), specific heuristics (Avella et al. 2009), benders decomposition 
(de Camargo et al. 2008), branch-and-price (Ro and Tcha 1984), tabu search (Al-Sultan 
and Al-Fawzan 1999), Lagrangian relaxation (Wu et al. 2015), etc.

Another important contribution of this paper is the proposal of an algorithmic 
approach to solve huge real instances of two-stage mixed 0–1 models using parallel 
computing paradigms. This work presents the parallelization of the Subgradient Method 
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proposed in Escudero and Garín (1984). The combination of Lagrangian relaxation 
and parallel computing techniques makes this model flexible for purchase managers in 
their daily tasks. Current research seems to validate the potential of parallel comput-
ing in stochastic programing. Thus, this paper presents a novel way of dealing with pro-
duction planning by farm selection inside a supply chain in the vegetable production 
environment.

A two stage model for uncertain fresh vegetable production planning
This model is adapted from the classic uncapacited facility location problem (Cornuejols 
et al. 1983; Erlenkotter 1978). From here on, S2FVPP is used as the model name.

The objective of the proposed model is to evaluate the available fresh vegetable farms 
and determine the ones that minimize the overall cost so as to satisfy the uncertain 
demand of the potential customers. The model is intended for cooperatives or private 
companies to accept or recommend farms to be part of them or to distributors to agree 
production contracts.

The parameters and the decision variables used to formulate the model are listed in 
Table 1. The S2FVPP configuration decisions consist of choosing whether to use a fresh 
vegetable farm to grow fresh vegetables or not. A binary variable is associated with the 
selection of these fresh vegetables farms in such a way that yi = 1 whether the fresh veg-
etable farm i is used to grow up the fresh vegetables; otherwise yi = 0. Let xij denote 
the fraction of demand serviced from farm i to the customer j under a specific stochas-
tic scenario ω. Furthermore, the cost of growing a unit of fresh vegetable in the fresh 
vegetable farm i is represented by cgvi, and the last but not least, the cost of serving a 
customer j from fresh vegetable farm i under the scenario ω is denoted by csvωij . Further-
more, a customer cannot be served from a fresh vegetable farm unless we contract its 
production, see (1e). Besides, each customer j must be full served so (1b) is needed in 
the model. Moreover, the model must ensure that the total amount of demand is satis-
fied by the final farm selection, see (1c). Last but not least, the amount of demand served 
for each fresh vegetable farm can not exceed its maximum productivity, see (1d). Finally, 
(1f ) defines the variable yi as binary (Fig. 1) shows this model. 

(1a)(S2FVPP) min
∑

ω∈Ω

πω

[

∑

i∈F

∑

j∈C

xωij csv
ω
ij

]

+
∑

i∈F

cgviyi

Table 1 Notations used in the mathematical parameters

F Set of farms available in our production field

Ω Set of different uncertain scenarios

C Set of different potential customers for our vegetables

yi Represents whether farm i is used or not

xωij % of demand serviced from farm i to customer j under scenario ω

csvωij Cost of servicing the customer i from farm j under scenario ω

cgvi Cost for growing a vegetable on farm i

dωj Demand of customer j under scenario ω

rωi Profitableness per hectare of farm i under scenario ω

si Surface in hectares of farm i

πω Represents the probability of scenario ω
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Problem (1), called S2FVPP, is expressed in compact representation, which is equiva-

lent to its equivalent deterministic model (DEM), that, in the splitting variable represen-
tation, can be expressed as: 

(1b)s.t. :
∑

i∈F

xωij = 1, ∀j ∈ C , ∀ω ∈ Ω

(1c)

∑

i∈F

yisir
ω
i ≥

∑

j∈C

dωj , ∀ω ∈ Ω

(1d)

∑

j∈C

dωj x
ω
ij ≤ rωi si, ∀ω ∈ Ω , ∀i ∈ F

(1e)0 ≤ xωij ≤ yi, ∀i ∈ F , ∀j ∈ C , ∀ω ∈ Ω

(1f)yi ∈ [0, 1], ∀i ∈ F

(2a)(S2FVPP) min
∑

ω∈Ω

πω

[

∑

i∈F

∑

j∈C

xωij csv
ω
ij +

∑

i∈F

cgviy
ω
i

]

(2b)s.t. :
∑

i∈F

xωij = 1, ∀j ∈ C , ∀ω ∈ Ω

(2c)

∑

i∈F

yωi sir
ω
i ≥

∑

j∈C

dωj , ∀ω ∈ Ω

(2d)

∑

j∈C

dωj x
ω
ij ≤ rωi si, ∀ω ∈ Ω , ∀i ∈ F

Fig. 1 The uncapacited facility location problem applied to the selection of the most suitable fresh vegetable 
farms as provider to the fresh vegetable supply chain servicing to specific providers
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Note that in the splitting variable model Problem (2), the first stage decisions are rep-
licated for each scenario. The non-anticipativity constraints (NAC), see (2e) and (2f ), are 
needed to make the problem equivalent to Problem (1). NAC constraints are expressed 
in that form to avoid the use of non-negative vectors of Lagrangian multipliers in the 
dualization of equality constrains. The advantages of dealing with the splitting variable 
model is the possibility of decomposing it into different independent scenarios and solv-
ing them using the Lagrangian decomposition (Escudero and Garín 1984).

Lagrangian relaxation
The Lagrangian relaxation (LR) of the S2FVPP for a given non-negative vector of weight 
µy = (µy1 , . . . ,µy|F |) refers to the mixed 0–1 LR minimization Problem presented in this 
section. 

It can be shown that Problem LR is a relaxation of Problem (2) because:

  • The feasible set of Problem LR contains the feasible set of Problem S2FVPP.
  • For any feasible solution (x, y) from Problem S2FVPP, and also any positive µ, the 

solution of Problem LR is a lower bound on the optimal value of Problem S2FVPP, 
thus ZLR ≤ ZS2FVPP.

The Problem LR(ω) provides a suitable structure to be decomposed in scenarios (ω). 

(2e)yωi − yω+1
i ≤ 0, ∀ω ∈ 1 . . .Ω − 1, ∀i ∈ F

(2f)yΩi − y1i ≤ 0, ∀i ∈ F

(2g)0 ≤ xωij ≤ yωi , ∀i ∈ F , ∀j ∈ C , ∀ω ∈ Ω

(2h)yi ∈ [0, 1], ∀i ∈ F

(3a)(LR) min
∑

ω∈Ω

πω

[

∑

i∈F

∑

j∈C

xωij csv
ω
ij +

∑

i∈F

(cgvi + (µω
i − µω−1

i ))yωi

]

(3b)s.t. :
∑

i∈F

xωij = 1, ∀j ∈ C , ∀ω ∈ Ω

(3c)

∑

i∈F

yωi sir
ω
i ≥

∑

j∈C

dωj , ∀ω ∈ Ω

(3d)

∑

j∈C

dωj x
ω
ij ≤ rωi si, ∀ω ∈ Ω , ∀i ∈ F

(3e)0 ≤ xωij ≤ yωi , ∀i ∈ F , ∀j ∈ C , ∀ω ∈ Ω

(3f)yi ∈ [0, 1], ∀i ∈ F
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One of the most common approaches to solving the Lagrangian relaxation is the sub-
gradient method (Fisher 2004; Escudero et al. 2004; Escudero and Garín 1984), known 
as a general-purpose method. It is used often to solve generic non-smooth convex opti-
misation problems. Hereafter, the question under discussion is whether or not a parallel 
implementation of Lagrangian decomposition using the subgradient method is suitable 
to solve efficiently models similar to the one proposed in this work.

Parallel Lagrangian decomposition
In this section, a parallel implementation of the Lagrangian decomposition method is 
proposed so as to gain computational efficiency in the resolution of problems such as 
model S2FVPP; see Problem (1). A serial implementation of Lagrangian decomposition 
using the subgradient method for dealing with two-stage stochastic mixed 0–1 models 
was presented and proposed in Escudero and Garín (1984).

The underlying argument in favour of designing a parallel implementation of Lagran-
gian decomposition using the subgradient method (pSM), is the independence between 
the problems generated by the scenario decomposition of model LR; see Problem (3). 
Furthermore, the operations performed by the subgradient method in each iteration are 
suitable to be executed in a parallel context too. Thus, the effort made in this work was 
focused on designing a parallel version of the subgradient method presented in Escudero 
and Garín (1984).

The parallel version pSM is identical to the serial version, with additional coding for 
shared memory data and synchronisation steps among the available computing cores. 
Instead of running a single computation task, the parallel implementation is able to run 
as many tasks as cores in the computing node are available.

The parallel algorithm proceeds to update first the objective function of the model 
LR(ω) from scenario 1 to scenario Ω with the value µk

ω, where k represents the cur-
rent iteration of the method and ω represents a specific scenario, ω ∈ Ω. Then, these 
updated LR(ω) problems are solved concurrently. Each thread, stores information about 

(4a)(LR(ω)) min πω

[

∑

i∈F

∑

j∈C

xωij csv
ω
ij +

∑

i∈F

(cgvi + (µω
i − µω−1

i ))yωi

]

(4b)s.t. :
∑

i∈F

xωij = 1, ∀j ∈ C

(4c)

∑

i∈F

yωi sir
ω
i ≥

∑

j∈C

dωj

(4d)

∑

j∈C

dωj x
ω
ij ≤ rωi si, ∀i ∈ F

(4e)0 ≤ xωij ≤ yωi , ∀i ∈ F , ∀j ∈ C

(4f)yi ∈ [0, 1], ∀i ∈ F
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the solution such as the values of the variables xωkij  and yωki  inside the matrix structures, 
which belong to shared memory. The execution of this step does not represent any syn-
chronisation problem in shared-memory environments. Since one of the dimensions of 
these matrices represents the assigned scenario, the threads, even executed in different 
cores, will not overwrite the same solution. After this step, pSM reduces all the partial 
solution of LR(ω), zkLR(ω), in the summatory zkLR. Hence, in this point, it is premised on 
the presumption of Eq. 5.

In a reduce operation, a private copy for each variable is created for each core. At the 
end, the reduction operation (sum) is applied to all private copies of the shared vari-
able, and the final result is written in the global shared variable. Next, pSM computes all 
the subgradients, Sk, taking into account the solution of the first stage variables yωki , the 
computation is performed using Algorithm 1.

The pseudo code of Algorithms 1 and 2 uses the notation of OpenMP to represent the 

shared-memory parallel approach. 
There is overwhelming evidence that two threads are accessing concurrently to the 

same memory region, because not only the values of y(k)ω in the first stage belonging 
to a specific thread are needed to compute the Subgradient, but also the values of the 
solution of the following thread, y(k)ω+1. The basic premises of parallel shared memory 
paradigm is that the same memory region can be read concurrently for multiple threads 
if and only if no one writes on this memory region. Thus, the algorithm does not end in 
any memory exception.

Once all the subgradients are computed, pSM needs to evaluate in a single thread the 
status of the algorithm at iteration k using the current global solution. This process con-
sists on checking whether the algorithm is able to improve the solution in future itera-
tions. The criteria used for taking this decision are deeply explained in Escudero and 
Garín (1984). After this phase, in case that the algorithm improve the current solution, 
some convergence parameters are updated so as to boost the ending of the method. For 
detailed information about the choice and the improvement of these parameters, check 
Escudero and Garín (1984) too.

Following these serial steps, pSM updates the matrix µk+1 this procedure is described 
in Algorithm (2). 

(5)zkLR =

Ω
∑

ω=1

zkLR(ω).
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There is no need to argue about the correctness of Algorithm (2). Note that b is fixed 
for all threads. Thus, this value is computed by a single thread and stored in the shared 
memory in order to be accessible for all threads. Moreover, this value is computed in the 
previous step, just before checking the stopping criteria. z̄LR represents an upper bound 
of the solution value of S2FVPP, see Problem (1).

Once the matrix µk+1 is updated for all threads, pSM goes to the next iteration, 
k = k + 1.

The current literature on Lagrangian decomposition abounds with different examples 
of small modifications to improve the behaviour and the convergence of the method. 
The implementation of pSM takes advantage of the introduction of the scenario cluster 
concept.The proposed method is able to deal with scenario clusters, see Escudero et al. 
(2004).

Figure 2 shows the proposed pSM scheme. This scheme summarises the iterative pro-
cess and highlights the steps realised in parallel by all available threads and the ones real-
ised in serial by a single thread.

Case study
In this section, a real study for S2FVPP instance is studied. A local chain of grocery 
shops is dealing with the problem of supplying tomatoes, grown by locally producers, at 
the minimum cost for the next year. Thus, the aim is to determine which tomato farms 
have to be contracted this season to satisfy future demand with local products.

Moreover, the local chain of grocery shops is made up of eight shops {C1–C8} and has 
to select tomato farms {A–J} to fulfil the future demand. These shops and tomato farms 
are distributed throughout Catalonia, see Fig. 3. This map represent the location of each 
shop and farm, approximately.

The main characteristics of the tomato farms used in this study are summarised in 
Table 2. Farm represents the name of the farm, Location indicates the place and Hectares 
the land surface. Quality field ranges from 1 to 10, where 1 represent the lowest quality. 
This index is computed using both the knowledge of historical data for past seasons and 
customers feedback information. Note that in Table 2, farms {A, D} has not quality index 
(−), representing that neither historical data nor customers feedback information are 
recorded for these farms. Besides, each cgv coefficient is computed taking into account 
the quality index and the size of the yields.

Scenarios are built considering production, demand and cost uncertainty of servicing 
each shop. By this way, 3 different scenarios are generated: poor, fair and boom with 
probability 0.22, 0.70 and 0.08 respectively. Table 3 shows the variation of the demand at 
each shop under the 3 scenarios considered in this study. Besides, the yield per hectare is 
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assumed to be fixed. The scenario values considered are 50,000, 72,000 and 80,000 kg/ha 
for poor, fair and boom respectively.

The main features of the grocery shops used in this study are summarised in Table 4. 
Grocery Shop represents the name of the grocery shop and Location indicates the place. 
The Serving Cost; csv, is computed using information related with the transport and 
delivery costs estimated for each pair of tomato farm and grocery shop. Table 4 describes 
the cost of service under the fair scenario.

Figure 4 shows the results and tactical decisions of the proposed model. These results 
show the farms selected to be used the following season. The selection of these farms 
minimizes the overall cost into 132.973. The proposed model is shown to deal with that 
kind of problem efficiently.

Practical implications

The S2FVPP model presented in this paper is aimed at practical application for the fresh 
vegetable agri-food industry. There is overwhelming evidence corroborating the idea 
that industry needs to understand the model before rely on it. Choosing the best farms 
to contract production is a critical decision in order to design an efficient model to select 
suppliers and explore alternative solutions by purchase managers. This position allow the 
manager to gain knowledge about the range of prices he can fix on contracts considering 

Fig. 2 Parallel scheme for the Lagrangian decomposition method using the subgradient method in a shared 
memory context
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the uncertainty represented by each scenario. Moreover, decisions makers are able to 
use the huge amount of big data gathered from their industrial context to feed the model 
with accurate coefficients for csv and cgv and enlarging the number of scenarios to be 
considered. Historical data sets for past seasons, consumers feedback, traceability, trans-
port cost, among others, can be used to model these input parameters. Furthermore, 
the stochasticity of the model introduces the market uncertainty and makes possible to 
improve predictions about the future trends so as to make better decisions in the whole 
agri-food business context.

Given the interest of selling local fresh vegetables, the model helps purchase manager 
to choose the best fresh vegetable farms to sign production contracts and hence fulfil 

Fig. 3 This graph represents the local chain distribution and tomato farms location in Catalonia region, for 
the case study
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final consumers demand. By the analysis of the optimal solution, the industry can nego-
tiate production contracts with the more suitable farms. In contrast, purchase managers 
without the model have to trust only on their expertise in the field in order to decide 
whether or not selecting a farm as supplier.

The model presented is a powerful tool capable of dealing with huge amount of infor-
mation and a number of scenarios coping with the uncertainty of future fresh vegetable 

Table 2 Summary stored in  the data center with  the main information for  available 
tomato farms

Farm Location Hectares Quality cgv (0.09 €/kg)

A Torreserona 0.005 – 9

B Torreserona 0.008 8 8

C Tàrrega 0.008 8 8

D Anglesola 0.012 – 9

E Mollerusa 0.016 7 18

F Alfaràs 0.012 9 12

G Torrefarrera 0.018 7 18

H Alpicat 0.025 7 25

I Alpicat 0.003 8 5

J Torrefarrera 0.025 6 30

Table 3 Information about the demand under each specific scenario

 Name Demand (kg)

Poor Fair Boom

C1 350 400 450

C2 200 300 350

C3 275 300 325

C4 250 325 400

C5 75 150 200

C6 150 250 400

C7 400 650 800

C8 250 300 350

Table 4 Main information about the grocery shops

Highlighting the serving cost csv under fair scenario per unit (0.09 €/kg) of demand

Grocery shop Location Serving cost per unit (0.09 €/kg)

A B C D E F G H I J

C1 Lleida 5 5 10 10 7 10 6 6 6 6

C2 Lleida 5 5 10 10 7 10 6 6 6 6

C3 Lleida 6 6 11 11 8 11 7 7 7 7

C4 Lleida 5 5 10 10 6 10 6 6 6 6

C5 Balaguer 7 7 6 6 8 4 7 7 7 7

C6 Girona 30 30 20 22 25 37 28 28 28 28

C7 Barcelona 25 25 15 18 20 30 24 24 24 24

C8 Tarragona 16 16 10 11 20 25 16 16 16 16
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production to make the best decision. Much of the current solutions deals with the min-
imization of the global cost of choosing the most suitable neighbouring farms to supply 
products. However, the last but no the least, the model not only helps to minimise this 
cost but also helps purchase managers to reduce work time and effort. The time freed by 
the model allows managers to develop other activities or exploring different alternatives 
making them more efficient in their daily job.

Computational performance

In this section, the computational experiments to assess the behaviour of the proposed 
model is presented. The algorithm to solve the model was coded in C++ using the 
OpenMP library (2016), the Eigen C++ library (2016) and OPL, CPLEX 12.6 C++ API 
(2015). Moreover, tests were conducted on a virtual scientific computing platform of the 
University of Lleida, known as Stormy. More information about this infrastructure can 
be found in Stormy (2016). The virtual machine chosen to develop the experiments was 
configured with 10 CPU of 2 cores each one, 25 GB of RAM and also 100 GB of HDD. 
The operating system used was Ubuntu 13.04.

Fig. 4 Tactical decisions for farm election. Percentages serviced under each scenario
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A collection of benchmark instances, considering different possible scenarios was gen-
erated. A set of 30 farms and a set of 70 grocery shops are considered, so F = 30 and 
C = 70. The tests go from a small set of stochastic scenarios, where Ω = 20 to a huge 
set of them, where Ω = 300. Moreover, the uncertain scenarios were generated taking 
into account different combinations of financial and economic situations in the produc-
tion and demand. Table 5 summarise the size and configuration of the whole instances. 
The main parameters are #Farms, number of available farms; #Grocery shops, number 
of customers; and Ω, number of stochastic scenarios.

Table 6 shows the dimensions of the instances in the compact and splitting variable 
representations. This table extends the information presented in Table  5, showing the 
real complexity of the problems solved. The heading are as follows: m, number of con-
strains; ny, number of 0–1 first stage variables; nx, number of continuous second stage 
variables; Ω, number of scenarios.

There is overwhelming evidence that pSM can be configured using a huge range of 
parameters. However, this was not the purpose of this paper. The results presented were 
computed using the parameters described in Table 7.

Table 8 shows the results obtained using as solver CPLEX with automatic setting and 
using all the available CPU’s inside the machine, solving the original S2FVPP in both 
the compact and splitting variable representation. The results of applying the parallel 
method pSM presented in this paper are highlighted too. The headings are as follows: 
TCR, CPLEX elapsed time (seconds) for obtaining the optimal solution for S2FVPP in 
compact representation; TSV , CPLEX elapsed time (seconds) for obtaining the optimal 
solution for 2SVPP in splitting variable representation; TpSM elapsed time (seconds) for 
obtaining the optimal solution using the pSM proposed in this paper; SppSM−CR, the 

Table 5 Testbench

Main configuration parameters

Instance #Farms #Grocery shops Ω

S1 30 70 20

S2 30 70 50

S3 30 70 80

S4 30 70 100

S5 30 70 200

S6 30 70 300

Table 6 Model dimensions

Size of instance sets

Instance Compact representation Splitting variable representation Ω

m ny nx m ny nx

S1 44,020 30 42,000 44,620 600 42,000 20

S2 110,050 30 105,000 111,550 1500 105,000 50

S3 176,080 30 168,000 178,480 2400 168,000 80

S4 220,100 30 210,000 223,100 3000 210,000 100

S5 440,200 30 420,000 446,200 6000 420,000 200

S6 660,300 30 630,000 669,300 9000 630,000 300
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improvement in speed in the execution of the parallel method compared with the exe-
cution using the commercial solver CPLEX, solving the compact representation model; 
and SppSM−SV , the improvement in speed in the execution of the parallel method com-
pared with the execution using the commercial solver CPLEX, solving the splitting vari-
able representation model.

The results presented show the strengths and weakness of using a commercial solver 
such as CPLEX, compared with the usage of the parallel method proposed in this paper. 
The use of pSM only depends on the model size. The results provide confirmatory evi-
dence that the method proposed is very suitable to deal with these kind of problems. 
These results highlight the goodness of applying parallel decomposition techniques 
instead of using commercial solution to deal with full stochastic models.

Small instances, such as S1 and S2 are very far from real-life problems. Whereas, 
the bigger the problem is, the closer to the real problems. The analysis of the biggest 
instances show a huge reduction in computing time, and proves the applicability and 
efficiency of the algorithm for dealing with the resolution of the model with real-life 
data. On logical grounds, there is no compelling reason to argue that instances S3, S4, 
or S5 are more suitable to be solved by the method proposed. The main advantage of the 
method proposed is the considerable improvement in computing performance, taking 
the computing time as a metric to compare the proposed method and CPLEX solver. 
Finally, the method seems to be very scalable, because the bigger the problem is, the 
more speed up reached.

The initial upper bound of the solution value of the original problem is obtained by 
using an intuitive heuristic. This heuristic obtained the greatest possible feasible solu-
tion by fixing to 1 all the values of the boolean 0–1 first stage variables and then solving 
the problem. To portray the issue in farms terms, the basic idea is solving the model 
by choosing all the farms. By this way, it is possible to obtain a feasible upper bound 

Table 7 Initial parameters for calibrating the pSM method

Norm norm type, G cluster size

Instance µ0 α0 Norm G # cores

S1 0 0.1 2 1 20

S2 0 0.9 2 2 20

S3 0 0.9 2 4 20

S4 0 0.001 2 5 20

S5 0 0.001 2 10 20

S6 0 0.001 2 15 20

Table 8 Performance of  parallel Lagrangian decomposition solving the relaxed splitting 
variable model over the resolution of the equivalent models using CPLEX solver

Instance TCR TSV TpSM SppSM−CR SppSM−SV

S1 58.7 60.9 49 1.19 1.24

S2 378 386 156.74 2.41 2.46

S3 3051 3522 1419 2.15 2.48

S4 4397 4844 3568 1.23 1.43

S5 62,266 63,000 12,348 5.04 5.1
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in a few seconds. The results presented show that this upper bound is good enough to 
achieve competitive results.

On the other hand, the results show that the solution of the splitting variable repre-
sentation takes much more time than the compact representation for solving the model. 
Therefore more computation effort is needed to obtain the Lagrangian multipliers vec-
tor (µ0) in the case of being initialized as the dual variables of the non-anticipativity 
constraints. This vector is initialized to zero in order to saving time by avoiding the cali-
bration phase of the method.

Finally, these results boost the usage of the model by purchase managers in the agroin-
dustry because models are solved in a reasonable computing time.

Conclusions
This work is focused on the design and resolution of a model to deal with the selection 
of suppliers for a chain of grocery shops. The objective of this selection is to contract 
the production of fresh vegetables. Hence the grocery shop can offer local products and 
have a better position to control quality and traceability. The model takes into account 
the future demand of a set of customers and the uncertain production of a farm during 
a season. The objective was to develop a two stage mixed 0–1 model considering uncer-
tain production and demand. Thus, the model presented seems to be a good approach 
for solving this kind of problems. Moreover, the good behaviour of parallel Lagrange 
Decomposition for resolving the model shows its applicability to the real-life problems. 
The integration of the model in the software of purchase managers give them competi-
tive advantage when contracting production.

The proposed model is very practical and flexible and it will be very easy to adapt to 
other contexts with the same necessities.

In the future, this model will be transformed into a fully supply chain model consider-
ing all the uncertain costs of production, transportation, storage and delivery so as to 
make a decision model capable of taking tactical and strategic decisions for the full veg-
etable supply chain.

Finally, the parallel algorithm presented in this paper can be improved using other 
methods to solve the Lagrangian relaxation, as a cutting plane algorithm, the progressive 
hedging algorithm, or the parallel combination of each of these.
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