16 research outputs found

    Replant problems in South Tyrol: role of fungal pathogens and microbial populations in conventional and organic apple orchards

    Get PDF
    South Tyrol, the main Italian apple growing area, is characterised by an highly intensive soil cultivation. Previous investigations shows the existence of replant disorders although it has not been evaluated which are the main causes. A survey has been carried out in this area with two main aims I) to evaluate the role of soil borne pathogens in apple replant disease and II) to evaluate the effect of soil management toward soil borne pathogens causing replant diseases. The experimental sites were chosen in order to obtain three couples of contiguous conventional and organic apple orchards. Soil sickness test with young apple plants gave a significant growth reduction in all soil samples if compared to a peat control. Among all root colonising fungi (Fusarium oxysporum, F. solani, Aphanomyces sp., Cy/incrocarpon sp., Rhizoctonia sp. and Pythium sp.) some Rhizoctonia solani strains and all Pythium spp. were the most pathogenic. In all cases organic management seems to reduce the soil sickness severity caused by root rot fungal pathogens

    Ab-initio density functional study of O on the Ag(001) surface

    Full text link
    The adsorption of oxygen on the Ag(001) is investigated by means of density functional techniques. Starting from a characterization of the clean silver surfaces oxygen adsorption in several modifications (molecularly, on-surface, sub-surface, Ag2_2O) for varying coverage was studied. Besides structural parameters and adsorption energies also work-function changes, vibrational frequencies and core level energies were calculated for a better characterization of the adsorption structures and an easier comparison to the rich experimental data.Comment: 26 pages, 8 figures, Surf. Sci. accepte

    Applicability of the Broken-Bond Rule to the Surface Energy of the fcc Metals

    Full text link
    We apply the Green's function based full-potential screened Korringa-Kohn-Rostoker method in conjunction with the local density approximation to study the surface energies of the noble and the fcc transition and spsp metals. The orientation dependence of the transition metal surface energies can be well described taking into account only the broken bonds between first neighbors, quite analogous to the behavior we recently found for the noble metals [see cond-mat/0105207]. The (111) and (100) surfaces of the spsp metals show a jellium like behavior but for the more open surfaces we find again the noble metals behavior but with larger deviation from the broken-bond rule compared to the transition metals. Finally we show that the use of the full potential is crucial to obtain accurate surface energy anisotropy ratios for the vicinal surfaces.Comment: 13 pages, 5 figures, to appear in July in Surface Science Vol. 511,1 (2002

    Ab initio calculations for bromine adlayers on the Ag(100) and Au(100) surfaces: the c(2x2) structure

    Full text link
    Ab initio total-energy density-functional methods with supercell models have been employed to calculate the c(2x2) structure of the Br-adsorbed Ag(100) and Au(100) surfaces. The atomic geometries of the surfaces and the preferred bonding sites of the bromine have been determined. The bonding character of bromine with the substrates has also been studied by analyzing the electronic density of states and the charge transfer. The calculations show that while the four-fold hollow-site configuration is more stable than the two-fold bridge-site topology on the Ag(100) surface, bromine prefers the bridge site on the Au(100) surface. The one-fold on-top configuration is the least stable configuration on both surfaces. It is also observed that the second layer of the Ag substrate undergoes a small buckling as a consequence of the adsorption of Br. Our results provide a theoretical explanation for the experimental observations that the adsorption of bromine on the Ag(100) and Au(100) surfaces results in different bonding configurations.Comment: 10 pages, 4 figure, 5 tables, Phys. Rev. B, in pres

    Growth and properties of strained VOx thin films with controlled stoichiometry

    Full text link
    We have succeeded in growing epitaxial films of rocksalt VOx on MgO(001) substrates. The oxygen content as a function of oxygen flux was determined using 18O2-RBS and the vanadium valence using XAS. The upper and lower stoichiometry limits found are similar to the ones known for bulk material (0.8<x<1.3). From the RHEED oscillation period a large number of vacancies for both vanadium and oxygen were deduced, i.e. ~16% for stoichiometric VO. These numbers are, surprisingly, very similar to those for bulk material and consequently quite strain-insensitive. XAS measurements reveal that the vacancies give rise to strong low symmetry ligand fields to be present. The electrical conductivity of the films is much lower than the conductivity of bulk samples which we attribute to a decrease in the direct overlap between t2g orbitals in the coherently strained layers. The temperature dependence of the conductivity is consistent with a variable range hopping mechanism.Comment: 12 pages, 16 figures included, revised versio

    Physiological bone responses in the fingers after more than 10 years of high-level sport climbing: analysis of cortical parameters

    Full text link
    OBJECTIVE: Sports activity can induce bone modeling processes with apposition of new bone and changes in bone morphology. Sport climbing places extreme forces and stress on the hands, especially on the bones of the fingers. This study examines sports-induced physiological adaptations of the finger bones of climbers. METHODS: In this cohort study, the radiographs of 31 high-level (Union Internationale des Associations d'Alpinisme [UIAA] metric scale range 8.33 to 11.33), experienced (median 20 years climbing time) adult climbers were compared with those of a control group of 67 patients. Cortical dimensions and variables were measured and analyzed in a total of 330 fingers. An association analysis of climbing-related variables was also performed. RESULTS: The climber's bones showed a 25% higher cortical proportion than those of the control group. On average, the outer cortical width of the climbers' bones was 6% larger and the medullary canal was 20% narrower than in the control group (P < .05). The differences between groups were more pronounced in the sagittal plane and more pronounced distally in the fingers. No associations were found between age, climbing experience, climbing level, and the cortical hypertrophy. CONCLUSIONS: Differences in bone morphology can be observed in the finger bones of adult climbers when compared with controls. Because the differences are more pronounced at the palmar and dorsal cortices, the analysis of the sagittal plane should always be included in future investigations. To evaluate climbing-related factors influencing these adaptive morphologic differences, further studies with larger, more specific study cohorts are needed
    corecore