31 research outputs found

    Small molecule inhibition of Staphylococcus aureus virulence

    Get PDF
    The increasing emergence of antibiotic resistant Staphylococcus aureus infections, particularly those caused by a single clone of methicillin resistant S. aureus (USA300 MRSA), coupled with the slowing of antibiotic discovery makes research into novel therapies a priority (Lowy, 2007). One strategy evolving is the development of drugs that target bacterial virulence factors as opposed to growth (Cegelski et al., 2008). Due to the lack of selective pressure, bacterial resistance to the drugs would be minimized while the infection, attenuated by the inhibition of virulence factor production, could be cleared by the innate immune factors of the host. Virulence factors identified to date as essential for invasive USA 300 MRSA infection are globally regulated in part by a quorum sensing operon, agr (George and Muir, 2007; Novick and Geisinger, 2008; Yarwood and Schlievert, 2003). Host factors like apolipoprotein B provide defense by antagonizing agr signaling which demonstrates that host defense against an invasive infection could be accomplished by blocking agr signaling (Peterson et al., 2008). Therefore, we hypothesized that screening small molecule inhibitors for inhibition of agr signaling could contribute to drug discovery by providing optimal host defense against quorum sensing dependent S. aureus infections. Our work focuses on two small molecule inhibitors, CID# 2333 and CID# 3243271, identified in a screen of over 20,000 compounds for antagonism of agr signaling. These compounds demonstrate virulence factor inhibition in vitro and in an in vivo model of community associated -MRSA dermonecrotic infection

    Peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) restores carbapenem susceptibility to NDM-1-positive pathogens in vitro and in vivo

    Get PDF
    The objective of this study was to test the efficacy of an inhibitor of the New Delhi metallo-β- lactamase (NDM-1). Inhibiting expression of this type of antibiotic-resistance gene has the potential to restore antibiotic susceptibility in all bacteria carrying the gene.Methods: We have constructed a peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) that selectively inhibits the expression of NDM-1 and examined its ability to restore susceptibility to meropenem in vitro and in vivo.Results:In vitro, the PPMO reduced the MIC of meropenem for three different genera of pathogens that express NDM-1. In a murine model of lethal E. coli sepsis, the PPMO improved survival (92%) and reduced systemic bacterial burden when given concomitantly with meropenem.Conclusions: These data show that a PPMO can restore antibiotic susceptibility in vitro and in vivo and that the combination of PPMO and meropenem may have therapeutic potential against certain class B carbapenem- resistant infections in multiple genera of Gram-negative pathogens

    Apolipoprotein B Is an Innate Barrier against Invasive Staphylococcus aureus Infection

    Get PDF
    SummaryStaphylococcus aureus is both a colonizer of humans and a cause of severe invasive infections. Although the genetic basis for phenotype switching from colonizing to invasive has received significant study, knowledge of host factors that antagonize the switch is limited. We show that VLDL and LDL lipoproteins interfere with this switch by antagonizing the S. aureus agr quorum-sensing system that upregulates genes required for invasive infection. The mechanism of antagonism entails binding of the major structural protein of these lipoproteins, apolipoprotein B, to an S. aureus autoinducing pheromone, preventing attachment of this pheromone to the bacteria and subsequent signaling through its receptor, AgrC. Mice deficient in plasma apolipoprotein B, either genetically or pharmacologically, are more susceptible to invasive agr+ bacterial infection, but not to infection with an agr deletion mutant. Therefore, apolipoprotein B at homeostatic levels in blood is an essential innate defense effector against invasive S. aureus infection

    A tripartite cocktail of chimeric monoclonal antibodies passively protects mice against ricin, staphylococcal enterotoxin B and Clostridium perfringens epsilon toxin

    No full text
    Due to the fast-acting nature of ricin, staphylococcal enterotoxin (SEB), and Clostridium perfringens epsilon toxin (ETX), it is necessary that therapeutic interventions following a bioterrorism incident by one of these toxins occur as soon as possible after intoxication. Moreover, because the clinical manifestations of intoxication by these toxins are likely to be indistinguishable from each other, especially following aerosol exposure, we have developed a cocktail of chimeric monoclonal antibodies that is capable of neutralizing all three toxins. The efficacy of this cocktail was demonstrated in mouse models of lethal dose toxin challenge

    Selective chemical inhibition of agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance.

    No full text
    Bacterial signaling systems are prime drug targets for combating the global health threat of antibiotic resistant bacterial infections including those caused by Staphylococcus aureus. S. aureus is the primary cause of acute bacterial skin and soft tissue infections (SSTIs) and the quorum sensing operon agr is causally associated with these. Whether efficacious chemical inhibitors of agr signaling can be developed that promote host defense against SSTIs while sparing the normal microbiota of the skin is unknown. In a high throughput screen, we identified a small molecule inhibitor (SMI), savirin (S. aureus virulence inhibitor) that disrupted agr-mediated quorum sensing in this pathogen but not in the important skin commensal Staphylococcus epidermidis. Mechanistic studies employing electrophoretic mobility shift assays and a novel AgrA activation reporter strain revealed the transcriptional regulator AgrA as the target of inhibition within the pathogen, preventing virulence gene upregulation. Consistent with its minimal impact on exponential phase growth, including skin microbiota members, savirin did not provoke stress responses or membrane dysfunction induced by conventional antibiotics as determined by transcriptional profiling and membrane potential and integrity studies. Importantly, savirin was efficacious in two murine skin infection models, abating tissue injury and selectively promoting clearance of agr+ but not Δagr bacteria when administered at the time of infection or delayed until maximal abscess development. The mechanism of enhanced host defense involved in part enhanced intracellular killing of agr+ but not Δagr in macrophages and by low pH. Notably, resistance or tolerance to savirin inhibition of agr was not observed after multiple passages either in vivo or in vitro where under the same conditions resistance to growth inhibition was induced after passage with conventional antibiotics. Therefore, chemical inhibitors can selectively target AgrA in S. aureus to promote host defense while sparing agr signaling in S. epidermidis and limiting resistance development
    corecore