14 research outputs found

    Effects of Developmental Conditions on Nestling American Kestrel (\u3cem\u3eFalco Sparverius\u3c/em\u3e) Corticosterone Concentrations

    Get PDF
    How nestling birds respond to stressful situations may constitute an important survival component that has lasting developmental effects on the hypothalamic pituitary adrenal (HPA) axis. As birds are exposed to increasing amounts of potential anthropogenic stressors through land use change, understanding how these factors contribute to HPA development is important. We examined whether conditions experienced during the nestling stage affected free-living American Kestrel (Falco sparverius) HPA activity prior to fledging. Kestrels experienced varying levels of human disturbance around their nest and we classified this environmental exposure as high or low environmental human disturbance based on traffic patterns and land use. We then exposed some broods from high and low disturbance areas to a standardized disturbance protocol. Prior to fledging we collected blood samples from 25-day-old nestlings immediately after capture and 15 min post-capture. Corticosterone (CORT) did not vary with environmental human disturbance levels, disturbance protocol treatment, or with an interaction between environmental human disturbance and disturbance protocol treatment suggesting that nestling kestrels may not perceive external conditions related to human disturbance as stressful or kestrels may acclimate to disturbance. We also compared the relative effects of environmental human disturbance outside the nest cavity, conditions within the nest cavity (brood size), and individual condition (nestling fat scores) on baseline and stress-induced CORT. Baseline CORT did not vary with human disturbance level, brood size or fat score. Fat scores best explained stress-induced CORT with nestlings in better condition displaying elevated CORT. These results suggest that individual variation is more likely to explain HPA development compared to nest conditions or the external environment. This study demonstrates the importance of considering the effects of developmental conditions on the stress response at several scales

    Plasma Carotenoid Concentrations of Incubating American Kestrels (\u3cem\u3eFalco sparverius\u3c/em\u3e) Show Annual, Seasonal, and Individual Variation and Explain Reproductive Outcome

    Get PDF
    In wild birds, the proximate and ultimate factors that affect circulating carotenoid concentrations remain poorly understood. We studied variation in plasma carotenoid concentrations across several scales: annual, seasonal, pair, territory and individual, and evaluated whether plasma carotenoid concentrations explained reproductive outcome of wild American kestrels (Falco sparverius). We sampled plasma carotenoid concentrations of 99 female and 80 male incubating kestrels from April to June in 2008 to 2012. Plasma carotenoid concentrations were explained by an interaction between year and sex, date, and random effects for pair and individual identity. In general, plasma carotenoid concentrations of males were significantly higher than females, but this depended on year. Within a breeding season, earlier nesting kestrels had higher carotenoid concentrations than later nesting kestrels, a pattern that is coincident with seasonal trends in local fitness. Pair and individual identity explained variation in carotenoid concentrations suggesting that carotenoid concentrations of mated birds were correlated, and some individuals consistently maintained higher carotenoid levels than others. Male carotenoid concentrations were positively associated with number of young fledged per pair. These results are consistent with the hypothesis that higher quality individuals have higher carotenoid levels compared to lower quality individuals, despite annual variations in carotenoid availability

    Investigation of inter- and intraspecies variation through genome sequencing of Aspergillus section Nigri

    Get PDF
    Aspergillus section Nigri comprises filamentous fungi relevant to biomedicine, bioenergy, health, and biotechnology. To learn more about what genetically sets these species apart, as well as about potential applications in biotechnology and biomedicine, we sequenced 23 genomes de novo, forming a full genome compendium for the section (26 species), as well as 6 Aspergillus niger isolates. This allowed us to quantify both inter-and intraspecies genomic variation. We further predicted 17,903 carbohydrateactive enzymes and 2,717 secondary metabolite gene clusters, which we condensed into 455 distinct families corresponding to compound classes, 49% of which are only found in single species. We performed metabolomics and genetic engineering to correlate genotypes to phenotypes, as demonstrated for the metabolite aurasperone, and by heterologous transfer of citrate production to Aspergillus nidulans. Experimental and computational analyses showed that both secondary metabolism and regulation are key factors that are significant in the delineation of Aspergillus species.Peer reviewe

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Reproductive Failure of a Human-Tolerant Species, the American Kestrel, is Associated with Stress and Human Disturbance

    No full text
    Summary 1. The rapid increase of human activity in wild and developed areas presents novel challenges for wildlife. Some species may use human-dominated landscapes because of favourable resources (e.g. high prey availability along roadsides); however, use of these areas may increase exposure to anthropogenic stressors, such as human disturbance or noise, which can negatively affect reproduction or survival. In this case, human-dominated landscapes may act as an ecological trap. 2. We evaluated whether American kestrel Falco sparverius reproductive failure was associated with human disturbance (traffic conditions and land development) or other common predictors of reproductive outcome, such as habitat and clutch initiation date. Also, we examined relationships among human disturbance, corticosterone (CORT) concentrations and nest abandonment to explore potential mechanisms for stress-induced reproductive failure. 3. Twenty-six (36%) of 73 kestrel nesting attempts failed and 88% of failures occurred during incubation. Kestrels nesting in higher disturbance areas were 9.9 times more likely to fail than kestrels nesting in lower disturbance areas. Habitat and clutch initiation date did not explain reproductive outcome. 4. Females in higher disturbance areas had higher CORT and were more likely to abandon nests than females in lower disturbance areas. There was no relationship between male CORT and disturbance or abandonment. Females spent more time incubating than males and may have had more exposure to anthropogenic stressors. Specifically, traffic noise may affect a cavity-nesting bird’s perception of the outside environment by masking auditory cues. In response, incubating birds may perceive a greater predation risk, increase vigilance behaviour, decrease parental care, or both. 5. Synthesis and applications. Proximity to large, busy roads and developed areas negatively affected kestrel reproduction by causing increased stress hormones that promoted nest abandonment. These results demonstrate that species presence in a human-dominated landscape does not necessarily indicate a tolerance for anthropogenic stressors. Managers should carefully consider or discourage projects that juxtapose favourable habitat conditions with areas of high human activity to decrease risk of ecological traps. Noise mitigation, while locally effective, may not protect widespread populations from the pervasive threat of traffic noise. Innovative engineering that decreases anthropogenic noise at its source is necessary

    Challenges in Creating an American Kestrel Body Condition Index Based on Size-Adjusted Mass

    No full text
    Size-adjusted mass is a common body condition index (BCI) used to indicate nonstructural energy reserves (fat and protein). BCIs are calculated from ratios of mass divided by a morphometric(s) or residuals of a regression between mass and a morphometric(s). The morphometrics used in BCIs must accurately represent structural size to reliably index energy reserves and, ideally, BCIs should be validated with comparisons to true fat and protein reserves. Many studies of American Kestrels (Falco sparverius) have included BCIs in ecological analyses; unfortunately, few studies have reported how well morphometrics represented structural size or provided validation of BCIs relative to independent measures of energy reserves. We evaluated relationships between several morphometrics and mass to better understand which morphometrics may best represent structural size for two kestrel populations: captive birds at McGill University in Montreal, Canada, and free-living kestrels in southwestern Idaho, U.S.A. We also compared BCIs based on different morphometrics with subjective (visual) fat scores. Our data showed few strong (r \u3e 0.5) correlations between morphometrics and few strong correlations between each morphometric and mass. Moreover, correlations between morphometrics and mass depended on sex and location. Similarly, not all BCIs had statistically significant, positive correlations with subjective fat scores and correlations varied between sexes, suggesting that the reliability of each BCI differed between males and females. The morphometrics that best represent structural size most likely differ between males and females, and information from both sexes should not be combined to create one size measure for kestrels. Unless BCIs for specific American Kestrel subpopulations are validated, mass and additional qualitative information, such as fat scores, may be the most appropriate indicators of fat and protein stores

    Data from: Plasma carotenoid concentrations of incubating American kestrels (Falco sparverius) show annual, seasonal, and individual variation and explain reproductive outcome

    No full text
    In wild birds, the proximate and ultimate factors that affect circulating carotenoid concentrations remain poorly understood. We studied variation in plasma carotenoid concentrations across several scales: annual, seasonal, pair, territory and individual, and evaluated whether plasma carotenoid concentrations explained reproductive outcome of wild American kestrels (Falco sparverius). We sampled plasma carotenoid concentrations of 99 female and 80 male incubating kestrels from April to June in 2008 to 2012. Plasma carotenoid concentrations were explained by an interaction between year and sex, date, and random effects for pair and individual identity. In general, plasma carotenoid concentrations of males were significantly higher than females, but this depended on year. Within a breeding season, earlier nesting kestrels had higher carotenoid concentrations than later nesting kestrels, a pattern that is coincident with seasonal trends in local fitness. Pair and individual identity explained variation in carotenoid concentrations suggesting that carotenoid concentrations of mated birds were correlated, and some individuals consistently maintained higher carotenoid levels than others. Male carotenoid concentrations were positively associated with number of young fledged per pair. These results are consistent with the hypothesis that higher quality individuals have higher carotenoid levels compared to lower quality individuals, despite annual variations in carotenoid availability

    Quantifying multiple breeding vital rates in two declining grassland songbirds

    No full text
    Many studies of reproductive success in North American songbirds have focused on nesting success, while relatively few have evaluated breeding-season adult survival and post-fledging survival. Grassland songbirds are among North America's most rapidly declining avian groups, and knowledge of factors that influence vital rates is needed to address declines, develop management strategies, and accurately model population limitation. We concurrently monitored nesting success, breeding-season adult survival, and post-fledging survival of two grassland obligates, Baird's Sparrow and Grasshopper sparrow, breeding in western North Dakota and northeastern Montana. Nesting success was monitored by locating and visiting nests at regular intervals while adult and post-fledging survival were assessed by daily telemetry tracking of radio-tagged birds. We analyzed the three variables using logistic exposure and modeled climate, temporal, and vegetative covariates to explain variation in rates. Cumulative nesting success, breeding-season adult survival, and post-fledging survival were 37%, 78%, and 25%, respectively, for Baird's Sparrow and 16%, 74%, and 55% for Grasshopper Sparrow. Both nesting success and post-fledging survival in Baird's Sparrow were responsive to environmental covariates including temporal effects and vertical vegetation structure. Conversely, vital rates of Grasshopper Sparrow were largely unresponsive to covariates we modeled, perhaps because of the species' broader habitat niche relative to Baird's Sparrow. Breeding season adult survival in both species showed little annual variation and was high relative to overwintering survival estimates for the same species, while post-fledging survival in Baird's Sparrow was low and may be a management concern. We suggest as a next step the formal comparison of vital rates across life-stages in an integrated population model capable of identifying sources of population limitation throughout the full annual cycle of the species
    corecore