176 research outputs found

    Parametric mapping of QTL for resistance to European canker in apple in 'Aroma' x 'Discovery'

    Get PDF
    Resistance to European canker (Neonectria ditissima) in apple is currently one of the most important breeding targets for commercial production in Sweden. Previous research has identified significant genetic variation in susceptibility to the disease, with the local Swedish cultivar 'Aroma' considered as one of the most resistant cultivars. Identification of genetic regions underlying the resistance of this cultivar would be a valuable tool for future breeding. Thus, we performed Bayesian quantitative trait loci (QTL) mapping for resistance to European canker in a full-sib family of 'Aroma' x 'Discovery'. Mapping was performed with the area under the disease progression curves (AUDPCs) from all seven (AUDPC_All7) and the first four assessments (AUDPC_First4), and three parameters of a sigmoid growth model for lesion length. As a scale for the effect of the different parameters, historic phenotypic data from screenings of a genetically diverse germplasm was compiled and re-analyzed. The parametrization of the data on lesion growth increased the number of QTL that could be identified with high statistical power, and provided some insight into their roles during different stages of disease development in the current experimental setup. Five QTL regions with strong or decisive evidence were identified on linkage groups 1, 8, 15, and 16. The QTL regions could be assigned to either of the parameters lesion length at the first assessment ('LL_A1'), the maximal lesion growth rate (lesion length doubling time, 't_gen'), and the lesion length at girdling ('LL_G'). Three of these QTL were traced along the pedigrees of some known relatives of the FS family, and discussed in relation to future crosses for breeding and genetic research

    Microsatellite allele dose and configuration establishment (MADCE): an integrated approach for genetic studies in allopolyploids

    Get PDF
    BACKGROUND: Genetic studies in allopolyploid plants are challenging because of the presence of similar sub-genomes, which leads to multiple alleles and complex segregation ratios. In this study, we describe a novel method for establishing the exact dose and configuration of microsatellite alleles for any accession of an allopolyploid plant species. The method, named Microsatellite Allele Dose and Configuration Establishment (MADCE), can be applied to mapping populations and pedigreed (breeding) germplasm in allopolyploids. RESULTS: Two case studies are presented to demonstrate the power and robustness of the MADCE method. In the mapping case, five microsatellites were analysed. These microsatellites amplified 35 different alleles based on size. Using MADCE, we uncovered 30 highly informative segregating alleles. A conventional approach would have yielded only 19 fully informative and six partially informative alleles. Of the ten alleles that were present in all progeny (and thereby ignored or considered homozygous when using conventional approaches), six were found to segregate by dosage when analysed with MADCE. Moreover, the full allelic configuration of the mapping parents could be established, including null alleles, homozygous loci, and alleles that were present on multiple homoeologues. In the second case, 21 pedigreed cultivars were analysed using MADCE, resulting in the establishment of the full allelic configuration for all 21 cultivars and a tracing of allele flow over multiple generations. CONCLUSIONS: The procedure described in this study (MADCE) enhances the efficiency and information content of mapping studies in allopolyploids. More importantly, it is the first technique to allow the determination of the full allelic configuration in pedigreed breeding germplasm from allopolyploid plants. This enables pedigree-based marker-trait association studies the use of algorithms developed for diploid crops, and it may increase the effectiveness of LD-based association studies. The MADCE method therefore enables researchers to tackle many of the genotyping problems that arise when performing mapping, pedigree, and association studies in allopolyploids. We discuss the merits of MADCE in comparison to other marker systems in polyploids, including SNPs, and how MADCE could aid in the development of SNP markers in allopolyploids

    Comparison of Marker-based Pairwise Relatedness Estimators on a Pedigreed Plant Population

    Get PDF
    Several estimators have been proposed that use molecular marker data to infer the degree of relatedness for pairs of individuals. The objective of this study was to evaluate the performance of seven estimators when applied to marker data of a set of 33 key individuals from a large complex apple pedigree. The evaluation considered different scenarios of allele frequencies and different numbers of marker loci. The method of moments estimators were Similarity, Queller-Goodknight, Lynch-Ritland and Wang. The maximum likelihood estimators were Thompson, Anderson-Weir and Jacquard. The pedigree-based coancestry coefficients were taken as the point of reference in calculating correlations and root mean square error (RMSE). The marker data comprised 86 multi-allelic SSR markers on 17 linkage groups, covering 11 Morgans. Additionally, we simulated 10 datasets conditional on the real pedigree to support the results on the real dataset. None of the estimators outperformed the others. Knowledge of allele frequencies appeared to be the most influential, i.e., the highest correlations and lowest RMSE were found when frequencies from the founder population were available. When equal allele frequencies were used, all estimators resulted in very similar, but on average lower, correlations. The use of allele frequencies estimated from the set of 33 individuals gave, on average, the poorest results. The maximum likelihood estimators and the Lynch-Ritland estimator were the most sensitive to allele frequencies. The results from the simulation study fully supported the trends in results of the real dataset. This study indicated that high correlations (up to 0.90) and small RMSE (below 0.03), may be obtained when population allelic frequencies are available. In this scenario, the performances of the various estimators were similar, but seemed to favor the maximum likelihood estimators. In the absence of reliable allele frequencies the method of moments estimators were shown to be more robust. The number of marker loci influenced the average performance of the estimators; however, the ranking was not affected. Correlations up to 0.80 were obtained when two markers per chromosome and appropriate allele frequencies were available. Adding more markers to the current dataset may lead to marginal improvements

    Genomic characterization of putative allergen genes in peach/almond and their synteny with apple

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fruits from several species of the Rosaceae family are reported to cause allergic reactions in certain populations. The allergens identified belong to mainly four protein families: pathogenesis related 10 proteins, thaumatin-like proteins, lipid transfer proteins and profilins. These families of putative allergen genes in apple (<it>Mal d 1 </it>to <it>4</it>) have been mapped on linkage maps and subsequent genetic study on allelic diversity and hypoallergenic traits has been carried out recently. In peach (<it>Prunus persica</it>), these allergen gene families are denoted as <it>Pru p 1 </it>to <it>4 </it>and for almond (<it>Prunus dulcis</it>)<it>Pru du 1 </it>to <it>4</it>. Genetic analysis using current molecular tools may be helpful to establish the cause of allergenicity differences observed among different peach cultivars. This study was to characterize putative peach allergen genes for their genomic sequences and linkage map positions, and to compare them with previously characterized homologous genes in apple (<it>Malus domestica</it>).</p> <p>Results</p> <p>Eight <it>Pru p/du 1 </it>genes were identified, four of which were new. All the <it>Pru p/du 1 </it>genes were mapped in a single bin on the top of linkage group 1 (G1). Five <it>Pru p/du 2 </it>genes were mapped on four different linkage groups, two very similar <it>Pru p/du 2.01 </it>genes (<it>A </it>and <it>B</it>) were on G3, <it>Pru p/du 2.02 </it>on G7,<it>Pru p/du 2.03 </it>on G8 and <it>Pru p/du 2.04 </it>on G1. There were differences in the intron and exon structure in these <it>Pru p/du 2 </it>genes and in their amino acid composition. Three <it>Pru p/du 3 </it>genes (3.01–3.03) containing an intron and a mini exon of 10 nt were mapped in a cluster on G6. Two <it>Pru p/du 4 </it>genes (<it>Pru p/du 4.01 </it>and <it>4.02</it>) were located on G1 and G7, respectively. The <it>Pru p/du 1 </it>cluster on G1 aligned to the <it>Mal d 1 </it>clusters on LG16; <it>Pru p/du 2.01A </it>and <it>B </it>on G3 to <it>Mal d 2.01A </it>and <it>B </it>on LG9; the <it>Pru p/du 3 </it>cluster on G6 to <it>Mal d 3.01 </it>on LG12; <it>Pru p/du 4.01 </it>on G1 to <it>Mal d 4.03 </it>on LG2; and <it>Pru p/du 4.02 </it>on G7 to <it>Mal d 4.02 </it>on LG2.</p> <p>Conclusion</p> <p>A total of 18 putative peach/almond allergen genes have been mapped on five linkage groups. Their positions confirm the high macro-synteny between peach/almond and apple. The insight gained will help to identify key genes causing differences in allergenicity among different cultivars of peach and other <it>Prunus </it>species.</p

    Assessment of allelic diversity in intron-containing Mal d 1 genes and their association to apple allergenicity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mal d 1 is a major apple allergen causing food allergic symptoms of the oral allergy syndrome (OAS) in birch-pollen sensitised patients. The <it>Mal d 1 </it>gene family is known to have at least 7 intron-containing and 11 intronless members that have been mapped in clusters on three linkage groups. In this study, the allelic diversity of the seven intron-containing <it>Mal d 1 </it>genes was assessed among a set of apple cultivars by sequencing or indirectly through pedigree genotyping. Protein variant constitutions were subsequently compared with <b>S</b>kin <b>P</b>rick <b>T</b>est (SPT) responses to study the association of deduced protein variants with allergenicity in a set of 14 cultivars.</p> <p>Results</p> <p>From the seven intron-containing <it>Mal d 1 </it>genes investigated, <it>Mal d 1.01 </it>and <it>Mal d 1.02 </it>were highly conserved, as nine out of ten cultivars coded for the same protein variant, while only one cultivar coded for a second variant. <it>Mal d 1.04</it>, <it>Mal d 1.05 </it>and <it>Mal d 1.06 A, B </it>and <it>C </it>were more variable, coding for three to six different protein variants. Comparison of <it>Mal d 1 </it>allelic composition between the high-allergenic cultivar Golden Delicious and the low-allergenic cultivars Santana and Priscilla, which are linked in pedigree, showed an association between the protein variants coded by the <it>Mal d 1.04 </it>and <it>-1.06A </it>genes (both located on linkage group 16) with allergenicity. This association was confirmed in 10 other cultivars. In addition, <it>Mal d 1.06A </it>allele dosage effects associated with the degree of allergenicity based on prick to prick testing. Conversely, no associations were observed for the protein variants coded by the <it>Mal d 1.01 </it>(on linkage group 13), -<it>1.02</it>, -<it>1.06B, -1.06C </it>genes (all on linkage group 16), nor by the <it>Mal d 1.05 </it>gene (on linkage group 6).</p> <p>Conclusion</p> <p>Protein variant compositions of Mal d 1.04 and -1.06A and, in case of <it>Mal d 1.06A</it>, allele doses are associated with the differences in allergenicity among fourteen apple cultivars. This information indicates the involvement of qualitative as well as quantitative factors in allergenicity and warrants further research in the relative importance of quantitative and qualitative aspects of <it>Mal d 1 </it>gene expression on allergenicity. Results from this study have implications for medical diagnostics, immunotherapy, clinical research and breeding schemes for new hypo-allergenic cultivars.</p

    Detecting QTLs and putative candidate genes involved in budbreak and flowering time in an apple multiparental population

    Get PDF
    UMR AGAP - équipe AFEF - Architecture et fonctionnement des espèces fruitièresIn temperate trees, growth resumption in spring time results from chilling and heat requirements, and is an adaptive trait under global warming. Here, the genetic determinism of budbreak and flowering time was deciphered using five related full-sib apple families. Both traits were observed over 3 years and two sites and expressed in calendar and degree-days. Best linear unbiased predictors of genotypic effect or interaction with climatic year were extracted from mixed linear models and used for quantitative trait locus (QTL) mapping, performed with an integrated genetic map containing 6849 single nucleotide polymorphisms (SNPs), grouped into haplotypes, and with a Bayesian pedigree-based analysis. Four major regions, on linkage group (LG) 7, LG10, LG12, and LG9, the latter being the most stable across families, sites, and years, explained 5.6–21.3% of trait variance. Co-localizations for traits in calendar days or growing degree hours (GDH) suggested common genetic determinism for chilling and heating requirements. Homologs of two major flowering genes, AGL24 and FT, were predicted close to LG9 and LG12 QTLs, respectively, whereas Dormancy Associated MADs-box (DAM) genes were near additional QTLs on LG8 and LG15. This suggests that chilling perception mechanisms could be common among perennial and annual plants. Progenitors with favorable alleles depending on trait and LG were identified and could benefit new breeding strategies for apple adaptation to temperature increase

    Genomics tools available for unravelling mechanisms underlying agronomical traits in strawberry with more to come

    Get PDF
    In the last few years, high-throughput genomics promised to bridge the gap between plant physiology and plant sciences. In addition, high-throughput genotyping technologies facilitate marker-based selection for better performing genotypes. In strawberry, Fragaria vesca was the first reference sequence obtained in the Rosoideae sub-family. This genome has a high level of synteny with genomes of other species of diploid and polyploid Fragaria, but it also provides a reference for species like Rubus and Rosa for functional genomics. Many tools for genetic, genomic and functional analyses were introduced over the last 10 years and these tools are still evolving. For genotyping, many studies have used simple sequence repeats (SSRs) but whole genome sequencing is now a mature technology and facilitates the development of genotyping chips and other genetic approaches such as genome wide association studies (GWAS). Furthermore, microarray-based technologies have been eclipsed by RNA-seq, the high-throughput sequencing of RNA. These new approaches have led to advances in our understanding of the genetically complex octoploid species, and have revolutionized functional genomics. For all genetic and genomic studies, novel material such as complex crosses such as NILs and EMS have appeared in addition to the classical segregating population. With all these tools, strawberry now emerges as a plant model, not only for studying fruit quality but also for deciphering the mechanisms controlling various aspects of plant biology. Selective examples will be described to illustrate the latest research on strawberry and what is coming from other model species.Peer reviewe

    Microbial Translocation Is Associated with Extensive Immune Activation in Dengue Virus Infected Patients with Severe Disease

    Get PDF
    Background:Severe dengue virus (DENV) disease is associated with extensive immune activation, characterized by a cytokine storm. Previously, elevated lipopolysaccharide (LPS) levels in dengue were found to correlate with clinical disease severity. In the present cross-sectional study we identified markers of microbial translocation and immune activation, which are associated with severe manifestations of DENV infection.Methods:Serum samples from DENV-infected patients were collected during the outbreak in 2010 in the State of SĂŁo Paulo, Brazil. Levels of LPS, lipopolysaccharide binding protein (LBP), soluble CD14 (sCD14) and IgM and IgG endotoxin core antibodies were determined by ELISA. Thirty cytokines were quantified using a multiplex luminex system. Patients were classified according to the 2009 WHO classification and the occurrence of plasma leakage/shock and hemorrhage. Moreover, a (non-supervised) cluster analysis based on the expression of the quantified cytokines was applied to identify groups of patients with similar cytokine profiles. Markers of microbial translocation were linked to groups with similar clinical disease severity and clusters with similar cytokine profiles.Results:Cluster analysis indicated that LPS levels were significantly increased in patients with a profound pro-inflammatory cytokine profile. LBP and sCD14 showed significantly increased levels in patients with severe disease in the clinical classification and in patients with severe inflammation in the cluster analysis. With both the clinical classification and the cluster analysis, levels of IL-6, IL-8, sIL-2R, MCP-1, RANTES, HGF, G-CSF and EGF were associated with severe disease.Conclusions:The present study provides evidence that both microbial translocation and extensive immune activation occur during severe DENV infection and may play an important role in the pathogenesis

    Predicting Flowering Behavior and Exploring Its Genetic Determinism in an Apple Multi-family Population Based on Statistical Indices and Simplified Phenotyping

    Get PDF
    Irregular flowering over years is commonly observed in fruit trees. The early prediction of tree behavior is highly desirable in breeding programmes. This study aims at performing such predictions, combining simplified phenotyping and statistics methods. Sequences of vegetative vs. floral annual shoots (AS) were observed along axes in trees belonging to five apple related full-sib families. Sequences were analyzed using Markovian and linear mixed models including year and site effects. Indices of flowering irregularity, periodicity and synchronicity were estimated, at tree and axis scales. They were used to predict tree behavior and detect QTL with a Bayesian pedigree-based analysis, using an integrated genetic map containing 6,849 SNPs. The combination of a Biennial Bearing Index (BBI) with an autoregressive coefficient (Îłg) efficiently predicted and classified the genotype behaviors, despite few misclassifications. Four QTLs common to BBIs and Îłg and one for synchronicity were highlighted and revealed the complex genetic architecture of the traits. Irregularity resulted from high AS synchronism, whereas regularity resulted from either asynchronous locally alternating or continual regular AS flowering. A relevant and time-saving method, based on a posteriori sampling of axes and statistical indices is proposed, which is efficient to evaluate the tree breeding values for flowering regularity and could be transferred to other species
    • …
    corecore